Что такое грязевой мотор

Грязевой мотор — Mud motor

Буровой двигатель (или электродвигатель буровой установки) является винтовым насосом с положительным смещения (ПКПБ) , помещенный в бурильной колонне , чтобы обеспечить дополнительную мощность на битый в процессе бурения. Насос PCPD использует буровой раствор (обычно называемый буровым раствором или просто буровой раствор) для создания эксцентрического движения в силовой части двигателя, которое передается в виде концентрической мощности на буровое долото . В забойном двигателе используются различные конфигурации ротора и статора, чтобы обеспечить оптимальную производительность для желаемой операции бурения, обычно увеличивая количество лепестков и длину силового агрегата для большей мощности. В некоторых случаях в качестве входной мощности забойного двигателя можно использовать сжатый воздух или другой газ. Нормальное вращение долота при использовании забойного двигателя может составлять от 60 до более 100 об / мин.

Содержание

Основной принцип

Основываясь на принципе, разработанном Рене Муано, теория утверждает, что винтовой ротор с одним или несколькими лопастями будет вращаться эксцентрично, когда статор содержит больше лопастей, чем ротор. Поток жидкости передает мощность, позволяя узлу вращаться и вращать долото.

Нормальная конструкция / использование

Обычная конструкция забойного двигателя состоит из верхнего переводника, который соединяет забойный двигатель с бурильной колонной; силовая часть, состоящая из ротора и статора; секцию трансмиссии, где эксцентрическая мощность от ротора передается в виде концентрической мощности на долото с использованием шарнира равных угловых скоростей ; подшипниковый узел, который защищает инструмент от нижнего и нижнего давления; и нижний переводник, который соединяет забойный двигатель с долотом.

Когда долото находится на дне и двигатель работает эффективно, давление в гидравлической системе заметно увеличивается. Это вызвано ограничением в двигателе и называется «перепадом давления». Если этот перепад давления слишком высок, двигатель может остановиться, что означает, что долото перестало вращаться, и это может вызвать серьезное повреждение внутренней поверхности статора.

Забойный двигатель описывается с точки зрения количества ступеней, соотношения лепестков и внешнего диаметра. Этапы — это количество полных поворотов, которые статор делает от одного конца до другого, а отношение лепестков — это количество лепестков на статоре к числу лепестков на роторе (у статора всегда на один лепесток больше, чем у ротора). . Большее количество ступеней указывает на более мощный двигатель. Большее количество лепестков указывает на более высокий выходной крутящий момент (для данного перепада давления), меньшее количество лепестков указывает на уменьшение создаваемого крутящего момента, но более высокую скорость вращения долота.

Рабочие параметры включают расход, частоту вращения долота и крутящий момент. Соотношение между ротором и геометрией статора определяет скорость вращения и крутящий момент. Скорость вращения пропорциональна скорости потока, а крутящий момент пропорционален падению давления в жидкости, когда она протекает через двигатель. Чем больше лепестков, тем выше крутящий момент и медленнее обороты.

Использование забойных двигателей во многом зависит от финансовой эффективности. В прямых вертикальных скважинах забойный двигатель можно использовать исключительно для увеличения скорости проходки (ROP) или для минимизации эрозии и износа бурильной колонны, поскольку бурильную колонну не нужно вращать с такой скоростью.

В большинстве случаев забойный двигатель используется при бурении наклонно-направленных скважин . Хотя для направления долота в желаемую целевую зону можно использовать и другие методы, они требуют больше времени, что увеличивает стоимость скважины. Грязевые двигатели можно настроить так, чтобы они имели изгиб, используя различные настройки самого двигателя. Типичные забойные двигатели могут быть изменены от 0 градусов до 4 градусов с примерно шестью приращениями отклонения на градус изгиба. Величина поворота определяется скоростью набора высоты, необходимой для достижения целевой зоны. Используя инструмент измерения во время бурения (MWD), бурильщик направленного бурения может направить долото в желаемую целевую зону.

Управляемые двигатели используются для бурения начальной точки. При бурении точки зарезки избегайте бурения мягких пластов непосредственно под твердыми. В твердых абразивных породах высокие боковые силы при выбивании могут вызвать серьезный износ хвостовика долота. В идеале начальная точка должна быть выбрана из неабразивной однородной породы.

Преимущества

  • Чрезвычайно твердые горные породы могут быть пробурены двигателями с использованием алмазных или поликристаллических алмазных долот (PDC).
  • Благодаря высокой скорости вращения достигается высокая скорость проникновения.
  • Обеспечит циркуляцию ствола скважины независимо от мощности или крутящего момента двигателя.

Главный недостаток в нефтяных месторождениях

Статор PCPD, который является основным элементом насоса, обычно футерован эластомером . Большинство отказов насоса PCPD происходит из-за этой эластомерной части. Однако условия эксплуатации и окружающая среда не должны ухудшать или вызывать механическое повреждение эластомерной части в течение всего срока службы оборудования. К сожалению, в отрасли нет эластомеров, которые могут служить дольше, сопротивляться абразивным жидкостям и твердым частицам и выдерживать отклонения при рабочих температурах. Наиболее распространенными сортами эластомеров, используемых для этого применения, являются сорта NBR (нитрил- или акрилонитрил-бутадиеновый каучук), которые обладают умеренно хорошими характеристиками. Определенно существует потребность в более качественных эластомерных смесях, чтобы охватить области, которые в настоящее время недоступны для ПХФД, а также для увеличения срока службы существующих продуктов.

  • Битовые скорости могут быть очень высокими, поскольку такой выбор битов важен. Высокая скорость может ограничивать использование определенных типов бит.
  • Могут потребоваться особые требования к насосу, поскольку для поддержания надлежащей и эффективной работы двигателя могут потребоваться определенные значения давления и расхода.
  • При использовании для управления направлением скважинная компоновка может быть длинной, и для ее сборки на полу буровой может потребоваться время.
  • Забойный двигатель может быть чувствительным к загрязняющим веществам. Это означает, что некоторые типы буровых растворов или добавок могут разрушить двигатель или снизить его производительность. Одним из конкретных примеров, как упомянуто выше, может быть использование бурового раствора на масляной основе с забойным двигателем. Со временем масло разрушает эластомеры и уплотнения двигателя.

Механизмы отказа

Выкрашивание — изношена резина в верхней части статора.

Читайте также:  Моторы 5 сил 4 такта самые надежные

Отслоение — отказ стальной трубы от связующего агента; разрушение эластомеров связующим агентом или связующим агентом.

Плохая посадка ротора / статора — неправильные допуски из-за ухудшения со временем. Также, если установка неправильная, перепад давления может быть слишком высоким или слишком низким. Слишком высокая — может повредить двигатель; слишком низко, и двигатель будет слабым и остановится, что может привести к поломке статора.

Температура забоя и бурового раствора может вызвать термическую усталость статора. Необходимо соблюдать осторожность, чтобы компенсировать разбухание статора.

Некоторые буровые растворы могут вызвать набухание эластомеров статора. Учет этого и температуры на забое также является важным фактором.

Материал из-за потери циркуляции (LCM) может закупорить двигатель, а предметы с острыми краями могут вызвать износ внутренних деталей двигателя.

Источник

Ротативный двигатель. Чумазый вояка…

Сегодня поговорим о двигателе, эра расцвета которого пришлась на тот период времени, когда авиация еще не вышла из состояния «летающих этажерок», но когда эти самые этажерки уже чувствовали себя в воздухе достаточно уверенно.

Основные принципы самолето- и двигателестроения быстро принимали устойчивые очертания. Появлялось все больше моделей двигателей для аэропланов, а вместе с ними как новые победы, так и новые проблемы в двигателестроении. Конструкторы и инженеры стремились (как это, вобщем-то, происходит и сейчас 🙂 ) максимально облегчить двигатели и при этом сохранить или даже увеличить их тяговую эффективность.

На этой волне и появился ротативный двигатель для тогдашних аэропланов. Почему именно для аэропланов? Да потому что сам по себе этот тип двигателя был разработан даже значительно раньше первого полета братьев Райт.

Однако обо всем по порядку. Что из себя представляет ротативный двигатель…. На английском rotary engine (что, кстати, на мой взгляд странно, потому что этим же словом обозначается роторный двигатель (двигатель Ванкеля)). Это двигатель внутреннего сгорания, в котором цилиндры с поршнями ( их нечетное количество) расположены радиально в виде звезды, обычно четырехтактный.

Рабочее топливо — бензин, воспламенение происходит от свечей зажигания.

По внешнему виду он очень похож на появившийся практически одновременно с ним и хорошо нам сегодня известный радиальный (звездообразный) поршневой двигатель. Но это только в неработающем состоянии. При запуске ротативный двигатель на неосведомленного о нем человека производит сильное впечатление.

Происходит это потому, что уж очень необычно, на первый взгляд, выглядит его работа. Ведь вместе с винтом вращается и весь блок цилиндров, то есть, по сути дела весь двигатель. А вал, на котором происходит это вращение закреплен неподвижно. Однако в механическом плане ничего необычного тут нет. Просто дело привычки 🙂 .

Топливо-воздушная смесь из-за вращения цилиндров не может быть подведена к ним обычным порядком, поэтому попадает туда из картера, куда подводится через полый неподвижный вал от карбюратора (или устройства его заменяющего).

Впервые в истории патент на ротативный двигатель получил французский изобретатель Félix Millet в 1888 году. Тогда этот двигатель поставили на мотоцикл и показали его на всемирной парижской выставке в 1889 году.

Позже двигатели Félix Millet ставились на автомобили, один из которых принял участие в первой в мире автомобильной гонке Paris–Bordeaux–Paris в 1895 году, а с 1900 года эти двигатели ставили на автомобили французской фирмы Darracq.

В дальнейшем инженеры-изобретатели стали обращать внимание на ротативный двигатель уже с точки зрения применения его в авиации.

Первым в этом плане был бывший ньюйоркский часовщик Stephen Balzer, создавший свой ротативный двигатель в 1890 году и ставший автором (совместно с инженером Charles M. Manly) первого в истории двигателя, разработанного конкретно для аэроплана, известного под названием Manly-Balzer engine.

Практически одновременно с ним работал американский инженер Adams Farwell, строивший автомобили с ротативными двигателями с 1901 года.

По некоторым сведениям принципы конструкции его двигателей были взяты за основу производителями знаменитых впоследствии двигателей «Гном».

Что же так привлекало инженеров в ротативном двигателе? Что в нем такого полезного для авиации?

Есть две основные особенности, которые и являются его главными положительными качествами. Первая — это самый малый (по тому времени) вес по сравнению с двигателями той же мощности. Дело в том, что частоты вращения тогдашних двигателей были невысокие и для получения необходимой мощности (в среднем тогда порядка 100 л.с. (75 кВт)) циклы воспламенения топливовоздушной смеси давали о себе знать весьма ощутимыми толчками.

Чтобы этого избежать двигатели снабжались массивными маховиками, что, естественно, влекло за собой утяжеление конструкции. Но для ротативного двигателя маховик был не нужен, потому, что вращался сам двигатель, имеющий достаточную массу для стабилизации хода.

Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.

Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.

Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.

Теперь отвлечемся на пару полезных роликов о работе ротативного двигателя. Первый – это моделирование его работы на компьютере. Во втором показана работа “внутренностей” двигателя Le Rhône.


Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.

Из двигателестроительных одной из самых известных была французская фирма Société des Moteurs Gnome, в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) Gnom у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием Gnome и при этом настолько успешно, что наименование это было использовано в названии фирмы.

Читайте также:  Лодочный мотор сеа про инструкция по эксплуатации

В дальнейшем на базе Гнома был разработан ротативный двигатель Gnome Omega, имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, Gnome 7 Lambda – семицилиндровый, мощностью 80 л.с. и его продолжение Gnome 14 Lambda-Lambda (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.

Широко известен двигатель Gnome Monosoupape (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» 🙂 имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был бескарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.

Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели 🙂 ) и управлялся только отключением зажигания (об этом чуть ниже 🙂 ).

Другой известной французской фирмой, производившей ротативный двигатели была фирма Société des Moteurs Le Rhône, начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были Le Rhône 9C (мощность 80 л.с.) и Le Rhône 9J (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Le Rhône и Gnome первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием Société des Moteurs Gnome et Rhône. Двигатель 9J был, вобщем-то, уже их совместным продуктом.

Интересно, что вышеупомянутая германская фирма Motorenfabrik Oberursel в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей Gnome (хотя и была родоначальницей этого брэнда, можно сказать 🙂 ) и чуть позже двигателей Le Rhône. Их она выпускала под своими наименованиями: Gnome, как U-серия и Le Rhône, как UR-серия ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).

Например, двигатель Oberursel U.0 был аналогом французского Gnome 7 Lambda и устанавливался первоначально на самолет Fokker E.I., а двигатель Oberursel U.III – это копия двухрядного Gnome 14 Lambda-Lambda.

Вообще фирма Motorenfabrik Oberursel всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни 🙂 …

Среди других известных двигателестроительных фирм значится также французская фирма Société Clerget-Blin et Cie ( интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина 🙂 ) со своим известным движком Clerget 9B.

Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки Walter Owen Bentley (того самого Бентли) Bentley BR.1 (заменившие Clerget 9B на истребителях Sopwith Camel) и Bentley BR.2 для истребителей Sopwith 7F.1 Snipe.

На двигателях Bentley в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.

Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют 🙂 (чаще всего как раз наоборот).

Немного об управлении. Современный (стационарный, конечно 🙂 ) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулировать подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите 🙂 ) газа.

У ротативного двигателя все не так просто 🙂 . Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.

Для этого обычно существовал дополнительный воздушный клапан (“bloctube”) . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.

Из-за большой инерционности двигателя (масса цилиндров все же немаленькая 🙂 ), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.

Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.

Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.

Читайте также:  Проверьте мотор рав 4

Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, несгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро 🙂 .

Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.

Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.

К 1918 году французская двигателестроительная фирма Société Clerget-Blin et Cie (ротативные двигатели Clerget 9B), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.

При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается, и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации, и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…

Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности – это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели 🙂 .

Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.

Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь.На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно 🙂 ) вал по специальным каналам.

В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло ( природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.

А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (≈75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики 🙂 . Масло, сгоревшее и не совсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете, и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.

Но и летчики – люди мужественные 🙂 . Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом, и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток – штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать…. наверное было не сложно 🙂 …

Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен 🙂 .

Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа.

Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев , в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.

Очень характерен в этом плане был известный самолет Sopwith Camel F.1 Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель Clerget 9B ( как примечание добавлю, что в последствии также ставился и английский Bentley BR.1(150 л.с.)). Мощный (130 л.с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) Camel был очень маневренен.

Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости 🙂 . Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях – 385. Цифры красноречивые…

Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания Camel-а быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо» 🙂 . Поворот вправо на 270º получался значительно быстрее, чем влево на 90º .

Источник

Поделиться с друзьями