Для чего двух фазные моторы

Однофазные и двухфазные асинхронные двигатели

Однофазные асинхронные двигатели — машины небольшой мощности, которые по конструктивному исполнению напоминают аналогичные трехфазные электродвигатели с короткозамкнутым ротором.

Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, или пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).

Магнитные оси этих фаз обмотки смещены относительно друг друга па угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.

Рис. 1. Схема включения однофазного асинхронного двигателя с короткозамкнутым ротором.

Это поле можно представить двумя составляющими — одинаковыми круговыми магнитными полями прямой и обратной последовательностей, вращающимися с магнитными индукциями, вращающимися в противоположные стороны с одной и той же скоростью. Однако при предварительном разгоне ротора в необходимом направлении он при включенной рабочей фазе продолжает вращаться в том же направлении.

По этой причине пуск однофазного двигателя начинают с разгона ротора путем нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые сдвинуты по фазе на величину, зависящую от параметров фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки или конденсатора, и элементов электрических цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине вращающееся магнитное поле с магнитной индукцией в воздушном зазоре, которая периодически и монотонно изменяется в пределах максимального и минимального значений, а конец ее вектора описывает эллипс.

Это. эллиптическое вращающееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазного двигателя в направлении вращения поля, и он в.течение нескольких секунд достигает почти номинальной скорости.

Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазный, поддерживаемый в дальнейшем соответствующей составляющей переменного магнитного поля, которая при своем вращении несколько опережает вращающийся ротор из-за скольжения.

Своевременное отключение пусковой фазы обмотки статора однофазного асинхронного двигателя от питающей сети необходимо в связи с ее конструктивным исполнением, предусматривающим кратковременный режим работы — обычно до 3 с, что исключает длительное пребывание ее под нагрузкой в связи с недопустимым перегревом, сгоранием изоляции и выходом из строя.

Повышение надежности эксплуатации однофазных асинхронных двигателей обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и теплового реле с аналогичными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).

Центробежный выключатель автоматически отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а тепловое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.

Перемена направления вращения ротора достигается изменением направления тока в одной из фаз обмотки статора при пуске путем переключения пусковой кнопки и перестановки металлической пластины на зажимах электродвигателя (рис. 2, а, б) или только перестановкой двух аналогичных пластин (рис. 2, в, г).

Рис. 2. Маркировка зажимов фаз обмотки статора однофазного асинхронного двигателя с короткозамкнутым ротором и их соединение для вращения ротора: а, в — правого, б, г — левого.

Сравнение технических характеристик однофазных и трехфазных асинхронных двигателей

Однофазные асинхронные двигатели отличаются от аналогичных по номинальной мощности трехфазных машин пониженной кратностью начального пускового момента k п = M п / M ном и повышенной кратностью пускового тока ki = Mi / M ном которые для однофазных электродвигателей с пусковой фазой обмотки статора, имеющей повышенное сопротивление постоянному току и. меньшую индуктивность, чем рабочая фаза, имеют значения k п — 1,0 — 1,5 и ki = 5 — 9.

Пусковые характеристики однофазных асинхронных двигателей хуже аналогичных характеристик трехфазных асинхронных двигателей в связи с тем, что возбуждаемое при пуске однофазных машин с пусковой фазой обмотки статора эллиптическое вращающееся магнитное поле, эквивалентное двум неодинаковым круговым вращающимся магнитным полям — прямому и обратному, вызывает появление тормозного эффекта.

Читайте также:  Мотор со щеткой или мотор без щетки квадрокоптер

Подбором параметров элементов электрических цепей рабочей и пусковой фаз обмотки статора можно обеспечить при пуске возбуждение кругового вращающегося магнитного поля, что возможно при фазосдвигающем элементе, выполненном в виде конденсатора соответствующей емкости.

Так как разгон ротора вызывает изменение параметров цепей машины, вращающееся магнитное поле из кругового переходит в эллиптическое, ухудшая этим пусковые характеристики двигателя. Поэтому при скорости около 0,8 номинальной пусковую фазу обмотки статора электродвигателя отключают вручную или автоматически, в результате чего двигатель переходит на однофазный режим работы.

Однофазные асинхронные двигатели с пусковым конденсатором имеют кратность начального пускового момента kп = 1,7 — 2,4 и кратность начального пускового тока ki = 3 — 5.

Двухфазные асинхронные двигатели

В двухфазных асинхронных двигателях обе фазы обмотки статора с фазными зонами по 90 эл. град являются рабочими. Они расположены в пазах магнитопровода статора так, что их магнитные оси образуют угол 90 эл. град. Эти фазы обмотки статора отличаются друг от друга не только числом витков, но и номинальными напряжениями и токами, хотя при номинальном режиме двигателя полные мощности их одинаковы.

В одной из фаз обмотки статора постоянно находится конденсатор Ср (рис. 3, а), который в условиях номинального режима двигателя обеспечивает возбуждение кругового вращающегося магнитного поля. Емкость этого конденсатора определяют по формуле:

C р = I1 sinφ1 / 2πfUn 2

где I1 и φ1 — соответственно ток и сдвиг фаз между напряжением и током цепи фазы обмотки статора без конденсатора при круговом вращающемся магнитном поле, I и U — соответственно частота переменного тока и напряжение питающей сети, n — коэффициент трансформации — отношение эффективных чисел витков фаз обмотки статора соответственно с конденсатором и без него, определяемое по формуле

n = k об2 w 2 / k об1 w 1

где k об2 и k об1 — обмоточные коэффициенты соответствующих фаз обмотки статора с числом витков w 2 и w1.

Напряжение на зажимах конденсатора Uc, включенного последовательно с фазой обмотки статора двухфазного асинхронного двигателя, при круговом вращающемся магнитном поле выше напряжения сети U и определяется так:

Переход к нагрузке двигателя, отличной от номинальной, сопровождается изменением вращающегося магнитного поля, которое вместо кругового становится эллиптическим. Это ухудшает рабочие свойства двигателя, а при пуске снижает начальный пусковой момент до Мп M ном, ограничивая этим применение двигателей с постоянно включенным конденсатором только в установках с легкими условиями пуска.

Для повышения начального пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Сп (рис. 3, б), емкость которого намного больше емкости рабочего конденсатора и зависит от кратности начального пускового момента, которая может быть доведена до двух и более.

Рис. 3. Схемы включения двухфазных асинхронных двигателей с короткозамкнутым ротором: а — спостоянно присоединенным конденсатором, б — с рабочим и пусковым конденсаторами.

После разгона ротора до скорости 0,6 — 0,7 номинальной пусковой конденсатор отключают для избежания перехода кругового вращающегося магнитного поля в эллиптическое, ухудшающее рабочие характеристики двигателя.

Пусковой режим таких конденсаторных двигателей характеризуется такими показателями: k п = 1,7 — 2,4 и k i = 4 — 6.

Конденсаторные двигатели отличаются лучшими энергетическими показателями, чем однофазные двигатели с пусковой фатой обмотки статора, я коэффициент мощности их, благодаря применению конденсаторов, выше, чем у трехфазных двигателей одинаковой мощности.

Универсальные асинхронные двигатели

В установках автоматического управления применяют универсальные асинхронные двигатели — трехфазные машины малой мощности, которые присоединяют к трехфазной или однофазной сети. При питании от однофазной сети пусковое и рабочие характеристики двигателей несколько хуже, чем при использовании их в трехфазном режиме.

Универсальные асинхронные двигатели серии УАД изготовляют двух- и четырехполюсными, которые при трехфазном режиме имеют номинальную мощность от 1,5 до 70 Вт, а при однофазном режиме — от 1 до 55 Вт и работают от сети переменного напряжения частотой 50 Гц с кпд η = 0,09 — 0.65.

Однофазные асинхронные двигатели с расщепленными или экранированными полюсами

В однофазных асинхронных двигателях с расщепленными или экранированными полюсами, каждый полюс расщеплен глубоким пазом па две неравные части и несет на себе однофазную обмотку, охватывающую весь магнитопровод полюса, и короткозамкнутые витки, расположенные на его меньшей части.

Читайте также:  Мотор отопителя лада приора с кондиционером халла

Ротор у этих двигателей имеет короткозамкнутую обмотку. Включение обмотки статора на синусоидальное напряжение сопровождается установлением в ней тока и возбуждением переменного магнитного поля с неподвижной осью симметрии, которое наводит в короткозамкнутых витках соответствующие эдс и токи.

Под влиянием токов короткозамкнутых витков соответствующая им м. д. с, возбуждает магнитное поле, препятствующее усилению и ослаблению основного магнитного поля в экранированных частых полюсов. Магнитные поля экранированных и неэкранированных частей полюсов не совпадают по фазе во времени и, будучи смещенными в пространстве, образуют результирующее эллиптическое вращающееся магнитное поле, перемещающее в направлении от магнитной оси неэранированной части полюса к магнитной оси его экранированной части.

Взаимодействие этого поля с токами, индуктированными в обмотке ротора, вызывает появление начального пускового момента Мп = (0,2 — 0,6) Мном и разгон ротора до номинальной скорости, если тормозной момент приложенный к валу двигателя, не превышает начальный пусковой момент.

С целью увеличения начального пускового и максимального моментов однофазных асинхронных двигателях с расщепленными или экранированными полюсами между их полюсами располагают магнитные шунты из листовой стали, что приближает вращающееся магнитное поле к круговому.

Двигатели с расщепленными полюсами являются нереверсивными устройствами, допускающими частые пуски, внезапную остановку и могут длительное время находиться в заторможенном состоянии. Их изготовляют двух- и четырехполюсными номинальной мощностью от 0,5 до 30 Вт, а при усовершенствованной конструкции до 300 Вт для работы от сети переменного напряжения частотой 50 Гц с кпд η ном = 0,20 — 0,40.
Читайте также: Сельсины: назначение, устройство, принцип действия

Источник

Двухфазные электродвигатели и их особенности

Двухфазные асинхронные бесколлекторные и коллекторные электродвигатели используются для подключения к трехфазной сети переменного тока посредством двух проводов. Кроме обмотки, которая включена в сеть непосредственно, у двухфазных двигателей есть еще и вторая обмотка. Она последовательно соединяется либо с конденсатором, либо с катушкой – с одним из фазосмещающих устройств электродвигателя. Двухфазные обмотки, которые перпендикулярны друг другу, могут создавать вращающиеся магнитные поля. Для этого фазы обмотки необходимо запитать токами, которые смещены по фазе на 90 градусов. В этом случае мы имеем вращающее магнитное поле, как в трехфазном двигателе.

Достоинства и недостатки двухфазных электродвигателей

В двухфазном электродвигателе, по аналогии с трехфазным, ротор самого двигателя получает ускорение, пока не достигнет конечной частоты вращения. Вращающий момент двухфазного электродвигателя обусловлен токами, которые вызываются вращающимся магнитным полем стержней ротора. При этом конечная частота вращения ротора ниже частоты вращения магнитного поля.

  • В случае, если фазы обмотки двигателя питать только от одной фазы электросети с однофазным током, для получения вращающегося магнитного поля применяют конденсаторы. Такой двигатель имеет свои недостатки. Это пульсация тока, которая, в свою очередь, уменьшает вращающий момент. Для компенсации данного недостатка установку усложняют путем отключения части емкости.
  • Электродвигатели двухфазные могут быть выполнены не только с короткозамкнутым, но и с полым ротором. В таком случае ротор выполнен в виде алюминиевого цилиндра, который вращается в воздушном зазоре между внутренним и внешним статором. В алюминиевом цилиндре вращающееся поле вызывает вихревые токи. В воздушном зазоре между статорами они взаимодействуют с магнитным полем, и тем самым создают вращающийся момент электродвигателя. Конечная асинхронная частота вращения цилиндра соответствует нагрузке на валу.
  • Благоприятные рабочие характеристики электродвигателя обусловлены малым моментом инерции полого ротора. Такие электродвигатели рассчитаны в первую очередь на малые мощности.

Сферы применения двухфазных электродвигателей

Основная сфера применения двухфазных двигателей – автоматические устройства. Например, электродвигатели с полым ротором зачастую применяют для автоматического регулирования в мостовых и компенсационных схемах.

Также двухфазные электродвигатели используют, как управляемые двигатели, регулируя частоту вращения, вращающий момент, изменяя фазы напряжения обмоток. Купить качественные электродвигатели Вы можете в нашей компании.

Источник

Бесколлекторный двигатель постоянного тока — принцип работы самого простого двухфазного типа

Коллекторные двигатели постоянного тока широко распространены в различных технических областях. Например, практически все ручные электроинструменты низкого и среднего ценового диапазона имеют коллекторные двигатели. Однако, основной недостаток таких двигателей заключается именно в наличии коллектора. Потому как на коллекторе происходят основные потери мощности электродвигателя. Но эти потери искупаются дешевизной изготовления коллекторно-щеточного узла.

Но ради увеличения КПД электродвигателя можно пойти и на удорожание его конструкции. В этом случае применяют бесколлекторные двигатели постоянного тока. Иногда такие электродвигатели называют бесконтактными двигателями. Отсутствие трущихся щёток позволяет повысить мощность и продлить срок службы двигателя.

Читайте также:  Как собрать мотор лада приора

Разумеется, щеточно-коллекторный узел у таких двигателей отсутствует. Например, он может заменяться полупроводниковым коммутатором-переключателем. Такой коммутатор управляется с помощью специальных сигналов. Сигналы поступают с бесконтактного датчика положения ротора. Чаще всего в качестве датчика положения ротора применяют датчики Холла .

Основой датчика Холла является тонкая пластинка проводника или полупроводника. На четырех гранях этой пластинки находятся контактные площадки с выводами. На два противоположных вывода подается питание. С двух других выводов снимается выходной сигнал. Сигнал появляется в том случае, если на пластину действует магнитное поле. Причем направление индукции этого поля должно быть перпендикулярно плоскости пластины.

Здесь рассматривается наиболее простой вариант бесконтактного двигателя постоянного тока. У данного двигателя ротор является постоянным магнитом. На статоре электродвигателя располагаются четыре обмотки.

В бесколлекторном двигателе, в отличии от коллекторного, якорем является статор . У бесколлекторных двигателей статор-якорь может иметь как внешнее, так и внутреннее устройство. Примером бесколлекторного электродвигателя с внутренним статором может служить мотор-колесо для электрических велосипедов и самокатов. Однако, двухфазный электродвигатель постоянного тока может быть только с внешним статором. У двигателей с внутренним статором количество фаз должно быть не менее трех.

Для работы бесколлекторного двигателя необходимо, чтобы постоянное магнитное поле ротора увлекалось за вращающемся электромагнитным полем статора. То есть, происходят практически те же процессы, что и в коллекторном двигателе постоянного тока. Только достигаются они другими средствами. В процессе работы двигателя по двум противоположным обмоткам поочерёдно протекает электрический ток. При этом эти обмотки становятся двумя разными полюсами электромагнита. Датчики Холла устанавливаются в пазах обмоток двух смежных полюсов. Иначе говоря, датчики устанавливают со смещением по окружности статора на 90% относительно друг друга.

Магнитное поле ротора действует на один из датчиков Холла. То есть, на тот, который в данный момент расположен перпендикулярно этому магнитному полю. На контактах датчика появляется напряжение. То есть, с этого датчика поступает сигнал на открытие соответствующих транзисторов. Транзисторы открываются и благодаря этому по двум противоположным обмоткам начинает течь электрический ток. Две противоположные обмотки статора становится электромагнитами с разными полюсами. Каждый из полюсов статора притягивает противоположный полюс ротора. Ротор поворачивается и своим магнитным полем действует на следующий датчик Холла.

Датчик посылает сигнал на транзисторы. Транзисторы открываются и по двум следующим противоположным обмоткам статора начинает течь электрический ток. Обмотки становится электромагнитами. И каждым из своих полюсов притягивают противоположный полюс ротора. Ротор поворачивается и действует на другой датчик Холла. Все эти действия повторяются вновь и вновь. То есть, до тех пор пока на двигатель подается питание ротор вращается. Для изменения направления вращения электродвигателя изменяют полярность питания датчиков Холла.

Данный двигатель постоянного тока имеет два основных положения в процессе своего движения. То есть, изменение его вращения имеют две фазы. Потому подобный электродвигатель постоянного тока называется двухфазным. Разумеется, что он имеет устройство и принцип работы отличные от двухфазного двигателя переменного тока .

Вместо датчиков Холла в таких двигателях могут использоваться и другие виды датчиков. Например, оптические датчики. А также существуют бесколлекторные двигатели, которые и вовсе не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Обычно двигатели без датчиков применяются, если старт происходит без нагрузки на валу.

Количество фаз бесконтактного электродвигателя может быть больше, чем две. Чем больше фаз, тем более плавнее вращается ротор. Но, с другой стороны, у таких двигателей более сложная система управления. К примеру, трехфазные двигатели постоянного тока получили наиболее широкое распространение. Потому как такая система наиболее оптимальна по соотношению сложности к эффективности. Бесколлекторные двигатели с двухполюсным ротором имеют наибольшую скорость вращения при наименьшем крутящем моменте. Электродвигатели постоянного тока с большим количеством полюсов имеют меньшую скорость вращения. Но зато у них больший крутящий момент.

Для вашего удобства подборка публикаций

Спасибо за посещение канала, чтение заметки, упоминание в социальных сетях и других интернет — ресурсах, а также подписку, лайки, дизлайки и комментарии ( Лайки и дизлайки можно ставить не регистрируясь и не заходя в аккаунт )

Источник

Поделиться с друзьями