Мотор постоянного тока для вентилятора

Содержание
  1. Практика автоматизации: Принудительное охлаждение электродвигателя
  2. Как обеспечивается охлаждение электродвигателя
  3. Мы ведь с вами понимаем, что тема данной стати родилась не случайно
  4. Чем опасен перегрев электродвигателя
  5. Что мы предлагаем?
  6. Какие преимущества нашего предложения?
  7. Предвидим ваш вопрос и отвечаем заранее:
  8. Охлаждение электродвигателей
  9. Перегрев электродвигателя и его последствия
  10. Самовентиляция
  11. Принудительное охлаждение
  12. Электрический двигатель синхронного типа
  13. Асинхронный электродвигатель
  14. Хладагенты
  15. Практика автоматизации: Принудительное охлаждение электродвигателя
  16. Как обеспечивается охлаждение электродвигателя
  17. Мы ведь с вами понимаем, что тема данной стати родилась не случайно
  18. Чем опасен перегрев электродвигателя
  19. Что мы предлагаем?
  20. Какие преимущества нашего предложения?
  21. Предвидим ваш вопрос и отвечаем заранее:

Практика автоматизации: Принудительное охлаждение электродвигателя

Как мы знаем, основное назначение асинхронного электродвигателя – преобразование электрической электроэнергии в механическую. Также мы знаем, что законы физики едины вне зависимости от силы научной и технической мысли, и данный процесс неизбежно сопровождается выделением тепла и, как следствие, нагревом электродвигателя.

Повышенная температура в меньшей степени несёт вред для металлических конструкций электродвигателя и в большей степени для изоляции обмоток, собственно, предельная рабочая температура электродвигателя определяется нагревостойкостью изоляции.

В соответствии с ГОСТ Р МЭК 60085-2011 существует классификация нагревостойкости изоляции и соответствующая этим классам фактическая температура изоляции: Y (90°C), A (105°C), E (120°C), B (130°C), F (155°C), H (180°C), N (200°C), R (220°C), 250 (250°C).

В части буквенного обозначения классов нагревостойкости вышеуказанный ГОСТ схож (но не идентичен) с классификацией, установленной национальной ассоциацией производителей электрооборудования (NEMA).

Как обеспечивается охлаждение электродвигателя

Современная конструкция асинхронных электродвигателей технически выверена, технологична и эстетически прекрасна. Пассивное охлаждение осуществляется за счёт отвода тепла в атмосферу через корпус. Не случайно корпус двигателя имеет продольные ребра и фактически выполняет роль радиатора. Активное охлаждение и отвод тепла от корпуса осуществляется за счёт крыльчатки (осевого вентилятора) на валу двигателя с нерабочей стороны, вентилятор закрывается защитным корпусом.

Таким образом, электродвигатель во время работы сам себя охлаждает, что очень удобно и в большинстве случаев при номинальных режимах работы достаточно, иногда такую систему вентиляции называют самоохлаждением или зависимой.

Мы ведь с вами понимаем, что тема данной стати родилась не случайно

Простота конструкции самоохлаждения двигателя иногда играет с нами злую шутку и не позволяет использовать оборудование в желаемых нами режимах работы, в таких случаях на помощь приходит независимая вентиляция электродвигателя.

В каких случаях может потребоваться независимая вентиляция:

  • Продолжительный режим работы* , характеризуется работой электродвигателя при неизменной нагрузке длительное время, за которое все части машины достигают установившейся (неизменной) температуры. В том случае если температура окружающей среды близка к верхней границе по паспорту устройства, то высока вероятность перегрева электродвигателя. Иными словами, нарушен теплообмен частей электродвигателя и окружающего воздуха.
  • Режим работы с частыми пусками и остановами* – это последовательность рабочих циклов, длительность циклов такова, что электродвигатель не успевает достигнуть максимальной температуры, но при останове не охлаждается до температуры окружающей среды. Вероятность перегрева так же высока, как и в предыдущем случае.
  • Частотно регулируемый режим работы с понижением частоты вращения . Понижение частоты (читай – скорости вращения вала) с глубиной перестройки более 10% несет опасность перегрева двигателя в следствии уменьшения потока воздуха с крыльчатки, расположенной на валу электродвигателя.
  • Частотно регулируемый режим работы с повышением частоты вращения . Следуя логике из прошлого пункта, повышение частоты вращения вала должно снять риски перегрева оболочки электродвигателя, и это действительно так.
  • Проблема в данном случае кроется в том, что крыльчатка вентилятора не рассчитана на работу при скорости отличной от номинальной, и если при понижении скорости вращения опасность кроется в снижении воздушного потока, то при незначительном повышении скорости вала вентилятор может создавать дополнительное аэродинамическое сопротивление, вызывая вибрацию и повышенную нагрузку на подшипники.
  • Установка на вал электродвигателя энкодера и/или тормоза возможна только на нерабочую часть вала, как раз на место штатного вентилятора.

Подробнее о режимах работы электродвигателей S1-S10 можно узнать в ГОСТ Р 52776-2007 (МЭК 60034-1-2004) Машины электрические вращающиеся.

Чем опасен перегрев электродвигателя

Воздействие повышенной температуры на изоляцию обмоток электродвигателя приводит к ухудшениям ее эксплуатационных характеристик: высыханию и растрескиванию электроизоляционных пропиток, повреждению керамических элементов, потери диэлектрических свойств. Как итог, межвитковое замыкание, потеря мощности или полный выход из строя электродвигателя.

Читайте также:  Ремонт помпы лодочного мотора тохатсу

Важно понять, что чем больше превышение температуры эксплуатации, тем быстрее протекает процесс снижения ресурса устройства, по некоторым непроверенным нами данным длительное превышение температуры эксплуатации на 10°С снижает ресурс электродвигателя вдвое, при незначительном превышении температуры этот процесс может протекать медленно, постепенно снижая производственный ресурс.

Что мы предлагаем?

Независимая вентиляция – проверенное временем решение для двигателей габарита от 63 до 200.

Независимая вентиляция представляет собой кожух (как правило, алюминиевый цилиндр) с вентилятором внутри, скорость вращения которого не зависит от скорости вращения вала электродвигателя, что обеспечивает эффективное охлаждение независимо от режима работы электродвигателя.

Важно, что независимая вентиляция устанавливается на место штатного кожуха, крепится штатными винтами и не требует никакой доработки или модернизации электродвигателя.

Какие преимущества нашего предложения?

  • Большой ассортимент по наличию (уточняйте у менеджеров компании);
  • Большая глубина защитного кожуха, позволяет монтировать на двигатели с тормозом и датчиком угла положения (энкодером);
  • Универсальное крепление по стандарту DIN, соответствует отечественным двигателям АИС;
  • Клеммная коробка с классом защиты IP55.

Предвидим ваш вопрос и отвечаем заранее:

  • Маркировка взрывозащиты 1Exd IICT4;
  • Клеммная коробка с классом защиты IP66;
  • Для двигателей габарита от 80 до 180.

Подписывайтесь, чтобы не пропускать новые публикации.

Источник

Охлаждение электродвигателей

Теплообмен – неотъемлемая часть работы электрического двигателя. Температура в его корпусе всегда повышена, что нестрашно металлическим элементам сборки, но может серьезно навредить (вплоть до полного разрушения) изоляции обмоток. Во избежание перегрева, способного привести к серьезной аварии, и применяется система охлаждения, которая обеспечивает быстрый отвод тепла и нормализует температуру электродвигателя. Чем эффективнее она работает, тем дольше прослужит оборудование без сбоев и ремонтов.

Перегрев электродвигателя и его последствия

Почему перегрев – это серьезный фактор риска? Повышенная температура внутри корпуса двигателя приводит:

  • к повреждению керамических компонентов, которые используются для изоляции обмоток;
  • высыханию пропиток;
  • растрескиванию изоляционных материалов;
  • потере диэлектрических свойств.

При негативном сценарии перегрев электродвигателя спровоцирует межвитковое замыкание, за которым последует потеря мощности и полная остановка двигателя. Чем выше будет температура по отношению к нормативной, чем дольше она будет воздействовать на элементы электродвигателя, тем быстрее будет снижаться ресурс оборудования.

Как показывает практика, в некоторых случаях повышение температуры на 10 градусов на протяжении длительного периода сократит срок службы двигателя в 2 раза. Если это превышение на 3–5–8 градусов, скорость потери ресурса снизится, но постоянный перегрев сократит срок его работы.

Самовентиляция

Устройство системы охлаждения электродвигателя может отличаться. Самый простой способ охлаждения электродвигателя – естественный, за счет отвода тепла вовне через отверстие в корпусе устройства. Такая система оправдывает себя в маломощных моделях, но недостаточна для профилактики перегрева.

Более эффективный вариант – самовентиляция. Такая система охлаждения электродвигателя реализована через нагнетание воздушного потока с помощью крыльчатки. Она увеличивает скорость отвода тепла, вырабатываемого подвижными деталями, чем предупреждает перегрев и обеспечивает нормальную работу оборудования. Устанавливается крыльчатка электродвигателя на его вал с нерабочей стороны.

Действует она по принципу ветряка, в некоторых моделях вентилятор охлаждения электродвигателя уже встроен в конструкцию ротора. Самовентиляция бывает наружной и внутренней.

  • Наружная система охлаждения электродвигателя реализована за счет наличия на корпусе устройства с внутренней стороны специальных ребер, благодаря которым охлаждающий воздушный поток проходит вдоль всей поверхности стенок. В такой системе площадь соприкосновения увеличена, что обеспечивает эффективность профилактики перегрева.
  • При использовании внутренней самовентиляции поток перемещается по специальным каналам между всеми подвижными элементами, обеспечивая непрерывную циркуляцию воздуха (температура «отбирается» сразу по мере выработки, нормальный температурный режим поддерживается постоянно, изоляция обмотки не страдает). Такая система охлаждения электродвигателя позволяет эксплуатировать его на протяжении всего жизненного цикла даже при высоких мощностях работы.
Читайте также:  Рекомендуемое мотор масло лада калина

Самовентиляция – простой способ профилактики перегрева и сохранения нужной температуры в корпусе устройства – оправдана в моделях, чья частота вращения ротора постоянна. Если двигателю средней или высокой мощности нужна регулировка скорости, самовентиляция нему не подойдет, только принудительное охлаждение.

Принудительное охлаждение

Принудительное охлаждение двигателя тоже использует крыльчатки вентилятора, но работает последний уже не под действием потока воздуха, а от собственного мотора. Такое исполнение отменяет зависимость интенсивности прокрутки лопастей от электрического двигателя – вентилятор обеспечивает качественный отвод тепла при любом режиме его работы (в том числе на малой частоте оборотов ротора).

Принудительное охлаждение электродвигателя незаменимо в моделях с частотным преобразователем (или альтернативными регуляторами скорости вращения ротора). Оно тоже может быть реализовано по-разному.

Самой эффективной считается схема замкнутого типа с жидкостными охладителями воздуха. В ней поток циркулирует между элементами электродвигателя и воздухоохладителем, нагнетаемый мотором вентилятора, в закрытой системе. Охладитель, кроме отвода тепла, еще и чистит воздух, что тоже положительно сказывается на работке оборудования.

Электрический двигатель синхронного типа

Контроль нагрева и охлаждения электродвигателя отличается для моделей разного типа. В синхронных устройствах, например, преимущественно используют проточный или продуваемый вариант. Как он работает:

  • воздух, который будет охлаждать механизмы, берется из внешней среды (рядом с местом установки электрического двигателя);
  • он направленно подается в корпус устройства;
  • нагретый поток отводится вовне.

Иногда применяется схема охлаждения электродвигателя, при которой отвод тепла производится через вентиляцию здания. В целях экономии средств воздух, нагреваемый установками высокой мощности, может применяться и для отопления других производственных или функциональных помещений (технология рекуперации).

Асинхронный электродвигатель

Температура асинхронных электродвигателей контролируется разными системами охлаждения. Здесь многое зависит от мощности устройства. Маломощные модели (мощность до 15 кВт) оснащаются наружной самовентиляцией или принудительным охлаждением. Более мощные механизмы используют схемы внутреннего охлаждения электродвигателя (часто – с замкнутым циклом, воздухоохладители при этом устанавливают и на корпус двигателя, и в фундамент под него).

Хладагенты

В некоторых случаях для повышения эффективности и ускорения отвода тепла в системе охлаждения электродвигателя воздух заменяют хладагентом. В роли последнего чаще всего выступает водород, который имеет теплоемкость в 7,1 раза выше, чем у воздушной массы.

Его использование более чем оправдано в замкнутых системах охлаждения электродвигателя большой мощности. Но такие системы не могут использоваться в механизмах общепромышленного применения из-за высокой стоимости их обслуживания. Потому для последних чаще применяют принудительное охлаждение с жидкостными теплообменниками («воздух-вода»).

Источник

Практика автоматизации: Принудительное охлаждение электродвигателя

Как мы знаем, основное назначение асинхронного электродвигателя – преобразование электрической электроэнергии в механическую. Также мы знаем, что законы физики едины вне зависимости от силы научной и технической мысли, и данный процесс неизбежно сопровождается выделением тепла и, как следствие, нагревом электродвигателя.

Повышенная температура в меньшей степени несёт вред для металлических конструкций электродвигателя и в большей степени для изоляции обмоток, собственно, предельная рабочая температура электродвигателя определяется нагревостойкостью изоляции.

В соответствии с ГОСТ Р МЭК 60085-2011 существует классификация нагревостойкости изоляции и соответствующая этим классам фактическая температура изоляции: Y (90°C), A (105°C), E (120°C), B (130°C), F (155°C), H (180°C), N (200°C), R (220°C), 250 (250°C).

В части буквенного обозначения классов нагревостойкости вышеуказанный ГОСТ схож (но не идентичен) с классификацией, установленной национальной ассоциацией производителей электрооборудования (NEMA).

Как обеспечивается охлаждение электродвигателя

Современная конструкция асинхронных электродвигателей технически выверена, технологична и эстетически прекрасна. Пассивное охлаждение осуществляется за счёт отвода тепла в атмосферу через корпус. Не случайно корпус двигателя имеет продольные ребра и фактически выполняет роль радиатора. Активное охлаждение и отвод тепла от корпуса осуществляется за счёт крыльчатки (осевого вентилятора) на валу двигателя с нерабочей стороны, вентилятор закрывается защитным корпусом.

Читайте также:  Устройство чертежи лодочного мотора

Таким образом, электродвигатель во время работы сам себя охлаждает, что очень удобно и в большинстве случаев при номинальных режимах работы достаточно, иногда такую систему вентиляции называют самоохлаждением или зависимой.

Мы ведь с вами понимаем, что тема данной стати родилась не случайно

Простота конструкции самоохлаждения двигателя иногда играет с нами злую шутку и не позволяет использовать оборудование в желаемых нами режимах работы, в таких случаях на помощь приходит независимая вентиляция электродвигателя.

В каких случаях может потребоваться независимая вентиляция:

  • Продолжительный режим работы* , характеризуется работой электродвигателя при неизменной нагрузке длительное время, за которое все части машины достигают установившейся (неизменной) температуры. В том случае если температура окружающей среды близка к верхней границе по паспорту устройства, то высока вероятность перегрева электродвигателя. Иными словами, нарушен теплообмен частей электродвигателя и окружающего воздуха.
  • Режим работы с частыми пусками и остановами* – это последовательность рабочих циклов, длительность циклов такова, что электродвигатель не успевает достигнуть максимальной температуры, но при останове не охлаждается до температуры окружающей среды. Вероятность перегрева так же высока, как и в предыдущем случае.
  • Частотно регулируемый режим работы с понижением частоты вращения . Понижение частоты (читай – скорости вращения вала) с глубиной перестройки более 10% несет опасность перегрева двигателя в следствии уменьшения потока воздуха с крыльчатки, расположенной на валу электродвигателя.
  • Частотно регулируемый режим работы с повышением частоты вращения . Следуя логике из прошлого пункта, повышение частоты вращения вала должно снять риски перегрева оболочки электродвигателя, и это действительно так.
  • Проблема в данном случае кроется в том, что крыльчатка вентилятора не рассчитана на работу при скорости отличной от номинальной, и если при понижении скорости вращения опасность кроется в снижении воздушного потока, то при незначительном повышении скорости вала вентилятор может создавать дополнительное аэродинамическое сопротивление, вызывая вибрацию и повышенную нагрузку на подшипники.
  • Установка на вал электродвигателя энкодера и/или тормоза возможна только на нерабочую часть вала, как раз на место штатного вентилятора.

Подробнее о режимах работы электродвигателей S1-S10 можно узнать в ГОСТ Р 52776-2007 (МЭК 60034-1-2004) Машины электрические вращающиеся.

Чем опасен перегрев электродвигателя

Воздействие повышенной температуры на изоляцию обмоток электродвигателя приводит к ухудшениям ее эксплуатационных характеристик: высыханию и растрескиванию электроизоляционных пропиток, повреждению керамических элементов, потери диэлектрических свойств. Как итог, межвитковое замыкание, потеря мощности или полный выход из строя электродвигателя.

Важно понять, что чем больше превышение температуры эксплуатации, тем быстрее протекает процесс снижения ресурса устройства, по некоторым непроверенным нами данным длительное превышение температуры эксплуатации на 10°С снижает ресурс электродвигателя вдвое, при незначительном превышении температуры этот процесс может протекать медленно, постепенно снижая производственный ресурс.

Что мы предлагаем?

Независимая вентиляция – проверенное временем решение для двигателей габарита от 63 до 200.

Независимая вентиляция представляет собой кожух (как правило, алюминиевый цилиндр) с вентилятором внутри, скорость вращения которого не зависит от скорости вращения вала электродвигателя, что обеспечивает эффективное охлаждение независимо от режима работы электродвигателя.

Важно, что независимая вентиляция устанавливается на место штатного кожуха, крепится штатными винтами и не требует никакой доработки или модернизации электродвигателя.

Какие преимущества нашего предложения?

  • Большой ассортимент по наличию (уточняйте у менеджеров компании);
  • Большая глубина защитного кожуха, позволяет монтировать на двигатели с тормозом и датчиком угла положения (энкодером);
  • Универсальное крепление по стандарту DIN, соответствует отечественным двигателям АИС;
  • Клеммная коробка с классом защиты IP55.

Предвидим ваш вопрос и отвечаем заранее:

  • Маркировка взрывозащиты 1Exd IICT4;
  • Клеммная коробка с классом защиты IP66;
  • Для двигателей габарита от 80 до 180.

Подписывайтесь, чтобы не пропускать новые публикации.

Источник

Поделиться с друзьями