Основные узлы лодочного мотора

Моторы лодочные

Моторы лодочные советского периода изготовлялись преимущественно с двухтактным двигателем внутреннего сгорания.

По числу цилиндров двигатели лодочных моторов разделялись на одно-, двух- и четырёхцилиндровые. По способу установки лодочные моторы подразделялись на подвесные (транцевые), бортовые и стационарные. Наибольшее распространение, благодаря лёгкости установки и удобству в эксплуатации, имели подвесные моторы, которые могут быть установлены на любую лодку с транцевой(плоской) кормой.

Размещение подвесного мотора за кормой обеспечивает лучшее использование габаритов лодки, не загрязняет её бензином и маслом, не требует установки специального рулевого управления, т. к. эта функция выполняется самим мотором с помощью румпеля (рукоятки) или заменяющего его приспособления.

Советские бортовые моторы были очень лёгкие, с небольшим объёмом цилиндра двигателя, крепились к борту лодки; имели удлинённый отъемный гребной винт, присоединённый непосредственно к коленчатому валу двигателя. Требовали установки отдельного рулевого управления. Были менее удобны, чем подвесные. Стационарные моторы устанавливались на более крупных лодках и небольших судах. Они были снабжены более мощным двигателем и стартерным механизмом мотоциклетного типа. Подвесные лодочные моторы к шестидесятым годам имелись в эксплуатации шести моделей: «Москва», ЗИФ-5, Рига-125, МЛ-20, ЛРМ-6 и МЛ-1.

Важнейшими узлами подвесных лодочных моторов являются двигатель; дейдвудная труба, соединяющая двигатель с приводом гребного винта; привод гребного винта, осуществляющий с помощью конических шестерён передачу от двигателя на винт; система подвески мотора; топливный бак.

1 — ЗИФ-5; 2 — Москва; 3 — ЛВР-6

Подвесной лодочный мотор «ЗИФ-5»

Основные узлы и агрегаты подвесного лодочного мотора

1 — бак; 2 — двигатель; 3 — система подвески; 4 — дейдвудная труба; 5 — гребной винт

Основные технические данные подвесных лодочных моторов

Привод гребного винта и винт мотора «Москва»

Привод гребного винта и винт мотора «Москва»: 1 — ведущая шестерня заднего хода; 2 — перекидная муфта; 3 — ведущая шестерня переднего хода; 4 — тяга реверса; 5 — рессора привода винта; 6 — ведомая шестерня; г — отъёмная часть корпуса; 8 — штифт гребного винта; 9 — резиновая втулка

Общий вид мотора «Москва» и крепление его на транце лодки

1950-е годы

Стационарный лодочный мотор СМ-255-Л

Охлаждение двигателя производится забортной водой с помощью самовсасывающего водяного насоса, установленного на корпусе редуктора и приводимого в действие от промежуточного вала ведущей шестерней редуктора. Малые габариты и небольшой вес мотора допускают установку его на самых лёгких судах.

Источник

Особенности устройства лодочного мотора

Конструкции лодочных моторов, как стационарные, так и подвесные, сегодня крайне востребованы во всем мире. Этот агрегат в свое время произвел революцию, и до сих пор является очень востребованным в лодочной среде. Конечно, ведь лодочный мотор – это основа всей лодки, без которой судно не сможет быстро и мощно рассекать водное пространство.

Лодочный мотор Suzuki DF15

Сегодня существует огромное множество лодочных агрегатов, которые отличаются своими функциями, конфигурациями, техническими моментами, дизайном, цветами и многим другим. Наиболее популярными являются такие лодочные агрегаты, как двухтактные и четырехтактные моторы на лодки. Эти современные агрегаты отличаются совершенными характеристиками надежности, безопасности и долговечности. Также можно долго говорить о том, насколько они являются практичными.

Особенности современных лодочных моторов

Общие характеристики современных агрегатов на лодки являются весьма внушительными. Сегодня мототехника сделала огромный шаг вперед, и тем самым сделала устройство лодочного мотора очень технологичным и совершенным:

  • сегодня подвесными лодочными моторами оснащают очень многие плавательные средства, такие как гидроциклы, яхты, катера и лодки, а также надувные лодки ПВХ. Можно сказать, что эти моторы являются универсальными. Порой даже, имея сразу и гидроцикл и лодку, лодочник имеет лишь 1 мотор на 2 средства передвижения;
  • лодочные моторы обладают крайне надежными, практичными и долговечными характеристиками. Особенно выделяются двухтактные и четырехтактные лодочные моторы, которые завоевали популярность во всем мире. Это крайне надежные агрегаты, которые являются очень мощными. Максимальная мощность таких лодочных моторов составляет 300 лошадиных сил. Большинство подобных лодочных моторов обладают очень хорошей экономичностью, учитывая их мощность. Порой экономичность доходит до 45 процентов;
  • на современном рынке мототехники более всего востребованы лодочные моторы из Японии, Соединенных Штатов Америки и Китая. Эти моторы представляют собой образцы высокого качества и долговечности. Со времен появления этой техники на рынке, можно сказать, что изменились все тенденции в мире лодочных моторов. Сразу же поменялось отношение этим агрегатам и принцип обслуживания. Теперь уходу за такими моторами уделяют особенное внимание и тщательно за ними следят. И моторы не остаются в долгу – после этого они способны прослужить много лет и даже десятков лет своему владельцу.

Устройство лодочного мотора для маломерных судов

Узнав немного больше про устройство двигателя на лодку, можно в целом понять, какими важными функциями обладает лодочный мотор. Именно поэтому многим лодочникам сегодня так интересно погружаться в изучение своих агрегатов на лодки:

  1. говоря про устройство лодочного мотора, который представлен сегодня на рынке мототехники, стоит сделать акцент на том, что он во многих случаях имеет двухцилиндровый двигатель, который оснащен карбюраторной системой. Если говорить о продувках двигателей, она, как правило, кривошипнокаменая дефлекторная. Сегодня в моторах присутствует водяное охлаждение, которое очень хорошо охлаждает всю систему от перегрева. Моторы с такой конструкцией отлично эксплуатируются, как в озерах, речках, так и в морях. То есть этот мотор терпит и морскую и пресную воду, не оставляя на деталях отложение солей. Глубина для такого двигателя должна быть больше 0, 8 метров;
  2. впуск топливной смеси в современный лодочный агрегат производится через специальное золотниковое устройство. Цилиндры такого устройства обычно изготовлены из специального серого чугуна в виде отдельных отливков. Бывают и большие единые блоки, которые изготавливаются из специального алюминиевого сплава с добавлением чугунных гильз. Все будет зависеть от модификации мотора. Обычно присутствуют каналы для воды, которая будет охлаждать все устройство. Также могут быть продувочные каналы, которые обеспечивают подачу топлива смешанного с моторным маслом из картера лодочного мотора;
  3. нужно отметить, что блок головок, которые производится также из алюминиевого материала, имеет специальные каналы, в которых будет производится охлаждение всей жидкости и сразу 2 входа для свечей. Этот блок будет присоединяться к цилиндрам двигателя посредством уплотненной армированной асбестовой прокладки;

  1. говоря про устройство лодочного мотора, нельзя не упомянуть про картер и коленчатый вал, которые всегда присутствуют в подвесном лодочном моторе. Литой алюминиевый картер обычно состоит из трех частей, образуя 2 кривошипные камеры. Их разделяет специальное кольцо двигателя, которое называют лабиринтным. Если говорить про разъемы камер, то их плоскости имеют уплотнение специальными прокладками, а также надежными резиновыми сальниками. Кроме того, есть специальные фланцы на картере двигателя, к которым и крепятся цилиндры агрегата. А также именно сюда присоединяются такие детали, как насос и карбюратор. Кроме того, примерно в середине картера обычно есть специальный канал посредством которого через карбюратор и кривошипные камеры проходить смесь бензина. Такая важная деталь лодочных моторов, как коленчатый вал изготавливается из двух неразъемных кривошипов. Каждый из этих кривошипов, как правило, имеет 2 специальные оси, или правильнее будет сказать – полуоси. Кривошипы же в свою очередь соединяются между собой посредством торцевых шлицов;
  2. следует поговорить о схеме такой важной части, как система подвески лодочного мотора. Система подвески лодочного мотора- это своеобразная основа. На нее монтируются практически все детали лодочного двигателя и специальные устройства для установки этого мотора на лодку. Система подвески выполняет множество функций в лодочном агрегате. К примеру, она хорошо воспринимает усилие, которое создает гребной винт лодочного мотора. Передает этот импульс на корпус агрегата и помогает использовать весь двигатель, как руль.

Кроме того, подвеска автоматическое откидывание всего двигателя при его наезде на то или иное препятствие. В эту систему обычно входит специальная плитка управления, оснащенная двумя рукоятками, вертлюг и 2 специальные основы этого средства.

Плита, о которой было упомянуто, имеет соединение с такой деталью, как вертлюг посредством специальной трубки. Она имеет вращение. В свою очередь к данному вертлюгу опоры крепятся при помощи шарниров. Также вертлюг имеет свое соединение с амортизатором всего мотора. Нужно отметить и тот факт, что общее положение подвесного лодочного мотора относительно всей плоскости транца очень хорошо может регулироваться.

Очень важно соответствие лодочного двигателя всем возможностям той или иной маломерной лодки. Наличие мощных стационарных моторов и подвесных лодочных двигателей, а также возможность установить на транец сразу несколько моторов, ставит перед лодочником некоторый вопрос. То есть в таком случае нужно хорошо понять мощность суммы данных агрегатов.

Здесь всегда будет какая-то максимально допустимая величина. Как правило, она всегда указывается в паспорте лодочного мотора. И всегда стоит придерживаться этой цифры, не превышая суммарную мощность, если вы выбираете несколько двигателей для своего судна.

Весьма затруднительным становится управление лодочным транспортом на волнах. Ведь любое несимметричное действие волны усиливает во много раз изменение угла атаки днищ. В таком случае лодка просто-напросто начинает выпрыгивать из воды. И управление таким судном весьма затрудняется. Из-за более сильных нагрузок динамики на корпус лодки при ударе о волны может произойти даже разрушение каких-то частей лодки.

Читайте также:  Автосалон 2000 лодочные моторы

Производители лодочных моторов ограничивают мощность лодочного мотора, который устанавливается на маломерное судно. Мощность, которая допускается для маломерных глиссирующих лодок, определяется по графику, который можно найти на пространствах интернета.

Источник

Й учебный вопрос. Устройство и работа механизмов и систем лодочного мотора

Ой учебный вопрос. Устройство и технические характеристики лодочных моторов

Рис.9.

Рис. 8

Рис.7.

Рис. 6. Диаграмма двигателя с поршневым управлением впуском

Рис.5.

Рис.3.

Рис.2.

Рис. 1. Схема работы двухтактного двигателя

I — впуск горючей смеси в картер; II — сжатие в цилиндре; III — сжатие в картере; IV — рабочий ход; V — выпуск и продувка в цилинд­ре; VI — окончание сжатия в картере

ся (рис. 1, III), т. к. к этому моменту впускное окно уже перекрыто (механизм управления впуском описан ниже). Когда верхняя кромка поршня дойдет до выпускного окна, камера сгорания соединится с атмосферой (однако выпуска не произойдет, потому что воспламенения смеси еще не было). Двигаясь дальше, верхняя кромка поршня открывает проду­вочное окно и смесь, предварительно сжатая в картере, ус­тремляется в камеру сгорания.

После прохождения НМТ поршень снова движется вверх. В картере под поршнем начинается процесс формирования но­вого заряда для продувки, а в камере сгорания смесь в это вре­мя сжимается. Поршень, двигаясь вверх, перекрывает сначала продувочные окна, а затем выпускные окна — продувка закан­чивается и начинается сжатие (рис. 1, II). В момент подхода поршня к ВМТ в запальной свече возникает искра, топливо воспламеняется и возросшее давление толкает поршень вниз — происходит рабочий ход (рис. 1, IV). Выпускные окна откры­ваются — начинается выпуск, давление в камере сгорания па­дает. Отработанные газы улетают через выпускное окно в ат­мосферу, а после открытия продувочных окон поступающая через них свежая смесь выталкивает остатки отработанных га­зов — происходит продувка.

1.2. СИСТЕМА ПРОДУВКИ ДВИГАТЕЛЕЙ ПОДВЕСНЫХ МОТОРОВЕсли процессы сжатия, сгорания и расширения в двух-и четырехтактных двигателях аналогичны, то очистка ци­линдра от остаточных газов и наполнение его свежей смесью у них существенно различаются. В четырехтактном двига­теле основная масса остаточных газов вытесняется порш­нем при его ходе к ВМТ (верхней мертвой точке). В двух­тактном двигателе отработанные газы вытесняются свежей смесью, предварительно сжатой в картере, при открытых продувочных и выхлопных окнах, т. е. продувка и выпуск происходят одновременно. При больших конструктивных преимуществах такая система очистки имеет и свои минусы: свежая смесь частью смешивается с остатками продуктов сгорания, а частью вылетает в атмосферу через выпускную систему. Чтобы свести к минимуму эти нежелательные явления при наилучшей очистке цилиндра от остаточных продуктов сгорания, конструкторами двухтактных дви­гателей разработаны различные системы продувки ци­линдра.

Таких систем несколько: контурная, в которой поток про­дувочной смеси движется по контуру цилиндра, прямоточ­ная с движением смеси от одного конца цилиндра к другому и др.

В настоящее время в двухтактных двигателях подвесных лодочных моторов повсеместно применяется возвратно-пет­левая схема продувки. Здесь рабочая смесь направляется из нижней части цилиндра в верхнюю, описывает петлю и вы­талкивает отработавшие газы. Петлевая схема продувки кон­структивно проста — это и определило ее выбор для лодоч­ных и мотоциклетных двигателей, хотя она и характеризует­ся наличием непродутых зон в цилиндре в большей степени, чем прямоточная и контурная.

Как же протекает процесс продувки? Свежая смесь из кривошипной камеры через продувочные каналы устремля­ется в цилиндр. Сначала потоки поступающей смеси подни­маются вверх, направляясь по стенке цилиндра к головке. По мере движения поршня вниз струи продувочной смеси отклоняются от стенки и направляются к противоположной стороне цилиндра. Далее продувочные струи сталкиваются и ударяются в стенку, противоположную выпускному окну, поток обтекает камеру сгорания и спускается вдоль стенки к выпускному окну.

Для хорошей очистки необходимо, чтобы восходящая часть потока заняла одну половину вертикального сечения цилинд­ра, а нисходящая — другую. Практически осуществить это очень трудно. Неустановившийся продувочный поток имеет различную скорость по своему сечению: максимальное ее значение — у стенки, противоположной выпускному окну, снижается в слоях, лежащих ближе к центру. В центральной части цилиндра могут остаться непродутыми застойные и вихревые зоны.

Вид продувочного потока в цилиндре зависит от ширины и высоты окон и от продолжительности их открытия (так называемое «время—сечение» окна), от формы продувочных каналов, определяющих углы входа продувочных струй в ци­линдр, от формы днища поршня и камеры сгорания. Чтобы вытеснить отработавшие газы, не перемешиваясь с ними, продувочные струи должны быть компактными и обладать достаточной энергией. Эта энергия тем выше, чем больше разность давлений в кривошипной камере и цилиндре во вре­мя открытия продувочных окон (т. е. степень сжатия в карте­ре), и чем меньше потери в продувочных каналах. Если энергия лодочных моторов наиболее распространенным видом петле­вой продувки является двухканальная.

Продувочный канал образован наружной, внутренней и боковы­ми и стенками. По результатам многочисленных экспе­риментальных работ выбраны оптимальные углы наклона этих стенок. В большинстве случаев боковая стенка рас­положена под углом 55—60° к оси симметрии горизонталь­ного сечения, а боковая стенка под несколько меньшим углом или параллельно ей. Наклон стенки 3 составляет 10—15° и близок к направлению касательной к сфере днища порш­ня у его кромки. В том случае, если углы входа продувочных каналов выполнены неправильно, количество остаточных газов увеличивается, а струи свежей смеси, прижимаясь к стенкам цилиндра, попадают в выпускное окно — так называемый прямой выброс свежей смеси. Это приводит к увеличению расхода топлива и уменьшению мощности. Не меньшее значение имеет симметричность продувочных окон и углов входа продувочных каналов отно­сительно выпускного окна. Несимметричность входящих в цилиндр потоков приводит к появлению завихрений и не­желательному перемешиванию свежей смеси с отработав­шими газами.

О качестве продувки в дви­гателе и, в частности, о сим­метричности выполнения про­дувочных каналов, можно су­дить по следам от продувочных струй и нагару в местах, неомываемых продувочной смесьюна днище поршня и камерысгорания.

Гидравлические потери в продувочных каналах стремят­ся свести к минимуму, поэтому поперечное сечение проду­вочных каналов и окон должно быть как можно большим. Так как увеличение высоты продувочных, а следовательно, и выхлопных окон связано с уменьшением полезного объе­ма цилиндра, сечение продувочного окна увеличивают за счет его ширины. Увеличение же ширины ограничено вели­чиной, равной 0,45 диаметра цилиндра (при дальнейшем ее увеличении возникает опасность выдавливания поршнево­го кольца в окна). При большей ширине в окне делается перемычка.

При выборе фаз продувки, т. е., в конечном счете, высо­ты выхлопных и продувочных окон, принимается в расчет величина перемещения поршня от открытия выхлопных окон до начала открытия продувочных — так называемое предва­рение выпуска.

Более раннее открытие продувочных окон (увеличение их высоты) сдвигает максимальное значение крутящего момен­та в сторону меньших скоростей вращения коленчатого вала. При слишком малом предварении выпуска давление в ци­линдре может оказаться выше, чем давление в картере, и при открытии продувочных каналов выхлопные газы попадут по ним в картер, вызвав его дополнительный нагрев и ухудшив наполнение.

Величина оптимальной фазы продувки в двухтактных двигателях различных лодочных моторов неодинакова и находится в пределах 110—120° («Салют» — 112°, «Вете­рок-8» — 110°, «Ветерок-12» — 114°, «Нептун» — 121°, «Моск­ва-25» — 119°).

Для гоночных лодочных мо­торов, работающих на высоких оборотах, величина фазы продув­ки возрастает до 125—135°.

Говоря о видах продувки, применяемых в конструкциях лодочных моторов, следует отме­тить отличие петлевой дефлекторной продувки (см. рис. 2, а), где направление потока смеси задается козырьком на поршне (дефлектором), от продувки, в ко­торой направление струй опреде­ляется формой и наклоном про­дувочных каналов. Первый вид продувки использован на лодоч­ных моторах «Ветерок», «Москва-М», «Москва-25», «Прибой» и на большинстве американских мо­делей. Второй — на моторах «Не­птун», «Салют», «Вихрь-М», «Ве­терок-14», на шведских и япон­ских моделях.

К преимуществам дефлекторной продувки можно отнести простоту конструкции и техно­логичность, так как продувочные и выхлопные окна выполняются простым сверлением. К недостаткам — менее благоприятную в отношении смесе­образования форму камеры сгорания, которая хуже проду­вается из-за сложной конфигурации, большой вес и повы­шенную температуру днища поршня из-за наличия де­флектора.

При направлении смеси продувочными каналами очистка камеры сгорания получается более эффективной. Этому способствует простая плоская или несколько выпуклая фор­ма днища поршня и сферическая форма камеры сгорания, позволяющая производить ее механическую обработку, в результате чего более точно взддерживается необходимая степень сжатия. Технологические трудности выполнения совпадения продувочных каналов и окон в гильзе окупаются получением более высоких показателей мощности и экономичности. На рис. 2, б показана трехканальная петлевая продувка мотора «Вихрь-30».

При двух- и трехканальной петлевой продувке очень важ­но точно направить продувочные струи при выходе из окон в камеру сгорания. На направление струи влияют в основном длина участка 3 (рис. 39) и величины радиусов канала, осо­бенно у внутренней стенки. Длина прямого участка стенки 3 должна быть не меньшей, чем ширина продувочного окна. Внутренней стенкой продувочного канала 5 в большинстве случаев служит сама гильза. Стремясь увеличить внутренний радиус канала и создать направляющую часть у входа в ци­линдр прибегают к так называемой «отдаленной» продувке. Так выполнены продувочные каналы «Ветерков» и ряда гоночных моделей мотоциклетных двигателей. В таких каналах, благодаря большим радиусам внутренней и наружной стенок, создается большая длина направляющей части и становится возможной настройка про­дувочных каналов на высокое число оборотов коленвала .

Читайте также:  Масло для 2 тактных моторов маннол

Из двух каналов с одинаковыми поперечными сечениями входа и выхода канал с большим радиусом поворота будет оказывать значительно меньшее аэродинамическое сопротивление пото­ку продувочной смеси. Как пока­зали испытания, более плавные повороты каналов мало влияют на максимальную мощность, но зна­чительно повышают ее в диапазо­не средних и низких скоростей вращения двигателя. При отработ­ке продувочного канала необходи­мо также бороться с любым отры­вом потока от стенок (чаще всего от внутренней стенки канала).

В последнее время получает все большее распространение петлевая продувка с одним или несколькими дополнительными каналами, располагаемыми напротив выпускного окна (рис. 3). Добавочные каналы рас­полагаются обычно под углом 45—60° к вертикали. Проду­вочные струи этих каналов отжимают поток газов в верхней части к центру цилиндра и способствуют очистке централь­ных непродутых зон. По резуль­татам исследований, проведенных на мотоциклетных двигателях, применение третьего продувочно­го канала позволяет увеличить мощность двигателя на 7—12 %. Увеличение мощности с 20 до 23 л. с. на отечественном подвесном моторе «Нептун-23» было также

достигнуто в основном за счет замены двухканальной продувки на трехканальную. Прохождение сме­си в добавочный канал через пор­шень улучшает к тому же смазку верхней головки шатуна и охлаж­дение поршня.

Размещение дополнительных продувочных каналов на зеркале цилиндра связано с определенными конструктивными труд­ностями, особенно при поршневом управлении впуском. При золотниковом управлении подвод топливной смеси произво­дится сбоку картера и это намного упрощает размещение добавочных продувочных каналов.

На процесс продувки определенное влияние оказывает и форма камеры сгорания. Полусферическая камера сгорания, применяющаяся на большинстве двухтактных двигателей, не является лучшим решением. Она обеспечивает ровное про­текание свежей смеси и тем самым не препятствует ее «вылетанию» в выпускное окно. Усложненная же форма камеры сгорания, обусловленная применением дефлекторной про­дувки, способствует образованию застойных, непродуваемых зон. Наилучшие результаты были получены при смещении полусферы в головке цилиндров. Такая конструкция была использована при разработке мотора «Ветерок-14» (рис. 45).

Возможна ли некоторая доводка системы продувки дви­гателя своими силами? Безусловно.

Дело в том, что при изготовлении картеров, блоков ци­линдров, вставок продувочных каналов применяются не­сколько комплектов кокилей или пресс-форм и возможны некоторые несовпадения по контурам деталей, отлитых на разной литейной оснастке. К этому же могут привести и тех­нологические отклонения при механической обработке дета­лей.

Довести детали, образующие продувочный канал, до пол­ного совпадения контуров можно собственными силами. Сле­дует стремиться к тому, чтобы в продувочном канале не было уступов и неровностей более 0,5мм, чтобы контур продувоч­ного окна в гильзе совпадал с контуром окна в отливке блока цилиндров. Можно улучшить вход смеси в продувочный канал, сняв фаску с гильзы цилиндра в этом районе. Очень тщательно следует подогнать вставку в продувочном канале моторов «Ве­терок», «Москва», «Прибой» для обеспечения правильного на­правления продувочной струи при выходе из канала.

Не следует, однако, увлекаться излишней полировкой про­дувочных каналов. Спортсменам-водномоторникам известны, например, случаи уменьшения мощности гоночных двигате­лей «Кениг» после полировки продувочных каналов, имевших довольно-таки грубую поверхность после литья (возможно, при этом была нарушена форма канала). Более подробно с реко­мендациями по доводке продувочных каналов можно ознако­миться в статье А. С. Шикина «Повышение мощности двига­телей «Ветерков» в журнале «Катера и яхты», № 6 за 1972 г.

1.2. СИСТЕМА УПРАВЛЕНИЯ ВПУСКОМ В ДВУХТАКТНОМ ДВИГАТЕЛЕ

На большинстве подвесных лодочных моторов в качестве продувочного насоса используется кривошипная камера двига­теля. Основные технические показатели такого двигателя — литровая мощность и экономичность — находятся в прямой зависимости от степени наполнения камеры сгорания горю­чей смесью.

Рассмотрим зависимость наполнения рабочей камеры от качества работы системы впуска, основное назначение кото­рой — обеспечивать наиболее полное заполнение кривошип­ной камеры (картера), т. е. объема ниже поршня, свежей го­рючей смесью.

Не касаясь процессов, происходящих в рабочей камере, т. е. выше поршня (сжатие горючей смеси, воспламенение ее и расширение), посмотрим, что происходит в картере, в чем заключается принцип действия системы впуска и каковы ее наивыгоднейшие, оптимальные характеристики.

При движении поршня в цилиндре двигателя вверх от НМТ (нижней мертвой точки) после закрытия продувочных окон в пространстве под поршнем возникает все увеличивающееся разрежение. Если в этот момент открыть канал, соединяю­щий кривошипную камеру с карбюратором, в нее будет заса­сываться горючая смесь. Когда, миновав верхнюю мертвую точку (ВМТ), поршень начнет двигаться вниз, поступившая смесь будет сжиматься (чтобы при этом не произошло ее об­ратного выброса, впускной канал после прохождения порш­нем ВМТ должен быть перекрыт).

Иными словами, кривошипная камера и поршень служат насосом, всасывающим смесь из карбюратора и подающим ее под давлением в камеру сгорания.

На рис. 4 показана иллюстрирующая сказанное теорети­ческая круговая диаграмма газораспределения. На ней схе­матически показано протекание во времени процессов вса­сывания (собственно впуск), выхлопа (выпуск) и продувки за один полный оборот коленвала. Понятно, что продолжитель­ность и моменты начала и конца этих процессов обусловле­ны расположением и размером (по высоте цилиндра) проду­вочных и выхлопных окон и выбором момента открытия впускных окон. В этой связи необходимо подчеркнуть, что картина газораспределения, показанная на рис. 4, условна, так как не учитывает инерции движущейся с большой ско­ростью (до 100 м/сек) горючей смеси. Если построить двига­тель по такой теоретической диаграмме, работать он, конеч­но, будет, но его литровая мощность, т. е. мощность в л. с. на 1000 см 3 рабочего объема, будет значительно ниже обычно достигаемого уровня.

Рис. 4. Диаграмма газораспределения без учета кинетической энер­гии потока движущейся смеси

Для обеспечения эффективности работы кривошипной камеры как насоса на практике, с учетом инерции потока, впускные окна открывают несколько раньше (обычно на ве­личину, не превышающую 20° угла поворота коленвала, называемую углом предварения впуска), чем поршень перекро­ет продувочные окна, и закрывают не в тот момент, когда поршень дошел до ВМТ, а позже — на величину до 60—70° угла поворота коленвала за ВМТ, называемую углом запаз­дывания закрытия. Первая из этих мер обеспечивает подса-сывание свежей смеси из карбюратора за счет кинетической энергии потока смеси, поступающей в цилиндр при еще про­должающейся продувке. Благодаря второй происходит допол­нительная «дозарядка» кривошипной камеры за счет кинети­ческой энергии установившегося потока смеси в канале от

карбюратора к кри­вошипной камере. Диаграмма такого вида (рис. 5) опти­мальна с точки зре­ния получения наи­высшей литровой мощности и эконо­мичности.

Продолжитель­ность продувки обычно равна 110— 130° поворота коленвала. Если при­нять, что в среднем продолжительность продувки равна120°, а всасывающее окно открывается на 15° раньше окончания продувки, угол предварения впуска (р1 равен примерно 135°.

Угол запаздывания закрытия (р2 обычно на нефорсиро­ванных моторах принимается равным 40—50° (при большей его величине наблюдается обратный выброс смеси в карбю­ратор) и доходит до 65—70° на гоночных высокооборотных двигателях. Если принять его равным 45°, общий угол (р(т. е. оптимальная продолжительность всасывания) получается рав­ным 180°.

Итак, мы установили оптимальные характеристики газо­распределения. Посмотрим теперь, как они реализуются практически, как работает управляющий механизм системы впуска.

В двигателях подвесных моторов применяются механиз­мы управления всасыванием трех типов: поршневые, клапан­ные и золотниковые.

Поршневое управление впуском. Само название механиз­ма показывает, что управление впуском, точно так же, как и продувкой и выхлопом, выполняется непосредственно самим

поршнем. Поршень при движении нижней кромкой перио­дически перекрывает впускное окно, прорезанное в зеркале цилиндра. При поршневом управлении диаграмма (см. рис. 6) всегда симметрична относительно ВМТ в силу того, что пор­шень открывает и закрывает впускное окно на одинаковых расстояниях до и после ВМТ. Угол запаздывания закрытия, как мы уже отмечали, невыгодно делать больше 60—70°, поэто­му и угол предварения открытия также будет равным 60—70°. Продолжительность всасывания получается 130°, т. е. мень­ше оптимальной на 50°.

Из круговой диаграммы виден и основной недостаток поршневого управления впуском: значительная часть хода поршня — от момента закрытия продувочных окон и до от­крытия впускных — при впуске не используется. По этой причине такая система распространения не получила, хотя и применялась на наших одноцилиндровых подвесных мото­рах «ЛМ-1, «ЛМР-6», «ЗИФ-5», «Стреле» и некоторых дру­гих. В то же время шведская фирма «Монарх-Кресчент» уже много лет применяет поршневой впуск на моторах различного объема; высокие литровая мощность (до 90 л. с.) и эконо­мичность моторов «Кресчент», несмотря на ограниченные возможности симметричной диаграммы, — результат длитель­ной отработки конструкции и специальной настройки систе­мы газораспределения.

Благодаря исключительной простоте и надежности пор­шневое управление впуском широко используется на транс­портных двигателях — в первую очередь для мотоциклов и мотороллеров.

Клапанный механизм управления впуском. Известны две конструкции клапанного механизма — с автоматическим и принудительным открытием и закрытием. Будем рассматри­вать только пер­вый вариант, так как второй при­меняется крайне редко — букваль­но в единичных конструкциях.

Для автомати­зации системы достаточно уста­новить на пути потока смеси от карбюратора к кривошипной ка­мере клапан, ко­торый под напо­ром потока от­крывается при ходе поршня к ВМТ и закрывается при обратном движении.

Обратимся к круговой диаграмме (рис. 7).

Поршень, двигаясь вверх от НМТ, закрывает верхней кромкой продувочное окно; начинает расти разрежение; под действием разницы давлений клапан впуска открывается и горючая смесь поступает в кривошипную камеру. После прохода порш­нем ВМТ объем кривошипной камеры начинает уменьшать­ся и происходит сжатие горючей смеси, но автоматический клапан еще некоторое время остается открытым под напором установившегося движения потока смеси и впуск продолжа­ется. Таким образом при использовании автоматического клапана, в отличие от поршневой схемы, получается несим­метричная диаграмма впуска.

Читайте также:  Двигатель мотоблок для лодочного мотора

Чаще всего в подвесных моторах применяют пластинча­тые лепестковые клапаны с ограничителями отгиба, распо­ложенными на перегородке из алюминиевого сплава или пласт­массы, крепящейся к передней части картера. Перегородка эта делается плоской (моторы «Ветерок», «Москва-12,5», «Прибой») или конической («Москва-25)»). Сами пластинки клапана изготовляются из стали или бериллиевой бронзы одинарными («Ветерок», см. рис. 8), двухлепестковыми («Прибой»), трехлепестковыми («Москва-12,5») или даже многолепестковыми (американские моторы фирмы «Эвинруд»). Полу­чение больших литровых мощнос­тей в двигателях с впускными плас­тинчатыми клапанами, особенно при малых рабочих объемах, затруд­нительно, поскольку сами клапаны создают большое аэродинамиче­ское сопротивление, а увеличение размеров впускных окон ведет к увеличению объема кривошипной камеры. Применение же обладаю­щих меньшим сопротивлением ме­нее жестких клапанов ограничива­ется необходимостью обеспечить прочность и надежность клапана и перегородки.

Золотниковый механизм управления впуском. При таком механизме управление впуском смеси производится золотни­ком, жестко связанным с коленвалом и вращающимся вместе с ним. Регулировкой положения на оси и угла сектора золот­ника можно обеспечить открытие и закрытие впускного окна в любой момент, независимо от положения поршня и степени разрежения в картере. Наиболее часто применяется дисковый золотник из пластмассы или стали, размещаемый непосред­ственно в картере (и скрепляемый со щечкой коленвала, как показано на рис. 9) либо в специальном приливе картера. В боковой стенке картера прорезано впускное окно. Золотник, вращаясь вместе с коленвалом, то открывает это окно, то сно­ва закрывает его: пока вырез в диске золотника проходит пе­ред окном, происходит впуск; как только сплошная часть зо­лотника закрывает окно, начинается сжатие. Золотник смазы­вается маслом, растворенным в горючей смеси; благодаря этому трение о стенки картера незначительно. Управление впуском с дисковыми золотниками, расположенными в картере, при­меняется на моторах «Вихрь» (золотники из текстолита) и «Нептун» (из капрона). На моторе «Са­лют» диско­вый золотник также выпол­нен из тек­столита, но размещен в специальном приливе кар­тера. Золот­никовое уп­равление вса­сыванием, по сравнению с поршневым и клапанным, обеспечивает наилучшее наполнение кривошипной камеры; это делает пер­спективным применение золотниковых механизмов в двух­тактных двигателях лодочных моторов с высокой литровой мощностью и особенно — в двигателях гоночных моделей.

Более подробное описание работы впускной системы двухтактного двигателя желающие могут найти в книгах:

Орлин А. С., Круглов М. Г. «Двухтактные двигатели», Маш-гиз, 1960 г. и Иваницкий С. Ю., Карманов Б. С., Рогожин В. В., Волков А. Г. «Мотоцикл. Теория, конструкция, расчет». Ма­шиностроение, 1971 г.

САЛЮТ 2Э Переносной мотор.

СРЕДНЯЯ ЦЕНА ПО МОСКВЕ: $150

макс. мощность 2 л.с. (1,5 кВт) при 5000 об/мин. Диаметр винта х шаг: 140х118 мм, двухлопастной. Топливный бак 2 л, встроенный. Выхлоп над винтом в воду. ДВИГАТЕЛЬ: 2-тактный. Количество цилиндров — 1. Рабочий объем 45 куб. см. Диаметр цилиндра 38 мм. Ход поршня 40 мм. Степень сжатия 7,8. Продувка петлевая. Карбю­ратор поплавковый. Зажигание электронное (бескон­тактное). Охлаждение водяное. Передаточное отно­шение редуктора 12:22 (0,545)

УПРАВЛЕНИЕ: румпельное. Длина вала (ноги):короткая. Запуск ручной с автовозвратом. Подъем дейдвуда ручной.

РЕКОМЕНДОВАННАЯ ВЫСОТА ТРАНЦА: 380 мм.

Популярный мотор, пользующийся хорошей репутацией не только среди владельцев малых лодок (эксплуатируемых в водоизмещающем ре­жиме), но и в среде любителей байдарочных по­ходов (против течения этот малыш способен утянуть две сильно нагруженные байдарки). Распространено его использование и в качестве резервного двигателя-дублера на случай отказа основного или при проходе по мелководью (да­же при загрузке 240 кг «Салют» способен обес­печить скорость 8. 10 км/час). При запуске и на ходу сравнительно надежен благодаря элек­тронной системе зажигания, но шумность не­сколько выше обычной. Система подъема дейдвуда обеспечивает 4 фиксированных положения наклона для правильной установки на транце. Задний ход (как и у остальных маломощных дви­гателей) осуществляется поворотом на 360 гра­дусов. Мотор может эксплуатироваться только в пресной воде.

ВЕТЕРОК 8(8Р)/12(12Р) Переносные моторы.

СРЕДНЯЯ ЦЕНА ПО МО­СКВЕ: $210 ($230) $220 ($250)

ОБЩИЕ ДАННЫЕ: макс. мощность 8 л.с. (5,9 кВт) /12 л.с. (8,8 кВт) (на носке коленвала при 5000 об./мин.). Генератор 12В, 30 Вт. Диаметр винта х шаг: 190 х 202 мм (216 х 210 мм) / 210 х 225 мм (222 х 240 мм). Топливный бак 14 л. Выхлоп над вин­том в воду.

ДВИГАТЕАЬ: 2-тактный. Количество цилиндров — 2. Рабочий объем 173 / 249 куб. см. Диаметр цилиндра 50 / 60 мм. Ход поршня 44 / 44 мм. Степень сжатия 7/6. Продувка дефлекторная. Карбюратор — 1. Зажигание электронное (бесконтактное). Охлаждение водяное. Передаточное отношение редуктора 13:21 (13:25) /13:21 (13:25). Передачи: передний ход — нейтраль (пе­редний ход — нейтраль — задний ход у 8Р и 12Р).

УПРАВЛЕНИЕ: румпельное. Длина вала (ноги): ко­роткая (8, 8Р и 12, 12Р) и длинная (8У, 8РУ и 12У, 12РУ). Запуск ручной с автовозвратом. Подъем дейдвуда ручной.

РЕКОМЕНДОВАННАЯ ВЫСОТА ТРАНЦА: 380 мм и 510 мм.

ВЕС: 24,5 кг (26 кг) / 25,5 кг (27 кг).

Компактные моторы, которые наиболее подхо­дят для установки на малогабаритные суда, перево­зимые на багажнике автомобиля, деревянные водоизмешающие лодки, надувные лодки. Бесконтакт­ная электронная система зажигания МБЭ-3 обеспе­чивает сравнительно надежный запуск новых моди­фикаций. Представленные моторы имеют и моди­фикации с удлиненной подводной частью (в марки­ровке модели — «У»), которые имеют больший вес (на 0,5 кг) и могут устанавливаться на суда с высо­той транца до 510 мм (в частности, небольшие яхты и т. п. в качестве вспомогательного привода). В мор­ском исполнении «Ветерки» могут эксплуатировать­ся и в соленой воде.

НЕПТУН 23(23Э)Переносные моторы.

СРЕДНЯЯ ЦЕНА ПО МО­СКВЕ: $220 ($265)

ОБЩИЕ ДАННЫЕ: макс. мощность 22 л. с. (16,2 кВт) при 5250-5750 об./мин. Генератор 12 В, 40 Вт. Диаметр винта х шаг: 230 х 280 мм. Топ­ливный бак 20л. Выхлоп над винтом в воду. ДВИГАТЕЛЬ: 2-тактный. Количество цилиндров -2. Рабочий объем 346куб. см. Диаметр цилиндра 61,75 мм. Ход поршня 58 мм. Степень сжатия 6,5. Продувка возвратно-петле­вая. Карбюратор -1. Зажигание бесконтактное элек­тронное (23Э) и двухискровое нагдино (23). Охлаж­дение водяное. Передаточное отношение редуктора 15:26 (0,577). Передачи: передний ход — нейтраль -задний ход.

УПРАВЛЕНИЕ: румпельное. Длина вала (ноги):короткая. Запуск ручной с автовозвратом. Подъем дейдвуда ручной.

РЕКОМЕНДОВАННАЯ ВЫСОТА ТРАНЦА: до 405 мм. ВЕС: 44 кг.

По своим параметрам и надежности — «Нептун-23(23Э)» можно отнести к лучшим отечественным моторам. Наличие 6-точечной подвески на резино­вых амортизаторах обеспечивает легкое управле­ние мотором, отсутствие увода румпеля в сторону, малую вибрацию судна. Мотор оборудован узлами крепления дистанционного управления газом и по­воротом судна. Кроме штатного гребного винта, для расширения тяговых возможностей мотора ре­комендуется приобрести два дополнительных (диаметр х шаг): 220 х 300 мм и 260 х 240 мм. На­иболее новая модификация мотора (23Э) оборудо­вана сравнительно надежной бесконтактной элек­тронной системой зажигания и более эффектив­ным доработанным карбюратором. Учитывая тяго­вые возможности и большую надежность, высо­кую ремонтопригодность и доступность запча­стей, мотор можно отнести к наиболее выгодным покупкам в своем классе (для установки на неболь­шие глиссирующие лодки с экипажем 3-4 человека или малые катера).

ВИХРЬ ЗО(ЗОЭ) Переносные моторы.

СРЕДНЯЯ ЦЕНА ПО МО­СКВЕ: $400($440)

ОБЩИЕ ДАННЫЕ: макс. мощность 30 л.с. (23 кВт) при 4500 об/мин. Генера­тор 12 В, 30 Вт. Диаметр винта х шаг: 240 х 300 мм. Топливный бак 22 л. Выхлоп над винтом в во­ду.

ДВИГАТЕЛЬ: 2-тактный. Количество цилиндров -2. Рабочий объем 488 куб. см. Диаметр цилиндра 72 мм. Ход поршня 60 мм. Степень сжатия 7. Про­дувка возвратно-петлевая. Карбюратор — 1. Зажи­гание электронное (бесконтактное). Охлаждение водяное. Передаточное отношение редуктора

14:24 (0,58). Передачи: передний ход — нейтраль -задний ход.

УПРАВЛЕНИЕ: рунпельное. Длина вала (ноги): ко­роткая. Запуск ручной с автовозвратом и электро­стартер (стандартно у ЗОЭ). Подъем дейдвуда ручной.

РЕКОМЕНДОВАННАЯ ВЫСОТА ТРАНЦА: до 405 мм.

ВЕС: 45,5 кг (49 кг).

Один из самых распространенных в нашей стране подвесных моторов. Наиболее подходит для установки на глиссирующие лодки или катера среднего размера (к примеру — распространенные отечественные «дюральки») с экипажем 3. 5 чело­век на борту. На нем установлена достаточно на­дежная бесконтактная электронная система зажи­гания МБ-22 и применена система настроенного выхлопа для уменьшения шума. Мотор оборудо­ван и устройством для подзарядки аккумулятора в процессе работы. Неплохой вариант для тех, кому не хватает мощности «Нептуна» (или средств для покупки дорогих западных альтернатив).

Подвесной лодочный мо­тор состоит из следующих ос­новных механизмов и узлов (см. рис. 10): двигателя (называемого также моторной головкой) с обслуживающи­ми его системами; передачи на гребной винт в виде вала, заключенного в дейдвудную трубу, подвески, привода гребного винта и бензобака, как правило, расположенно­го вне двигателя.

КОНСТРУКЦИЯ ДВИГАТЕЛЯ ПОДВЕСНОГО МОТОРА

Конструктивно двигатель подвесного мотора (рис. 11) со­стоит из неподвижных деталей — цилиндров, головок, карте­ра и подвижных — коленвала, поршней, шатунов, маховика (рис. 12).

Цилиндры двигателей выполняются из алюминиевого спла­ва в виде блока («Ветерок», «Нептун», «Вихрь», «Москва») либо каждый отдельно («Салют», «Привет-22») с залитыми или запрессованными гильзами из серого чугуна. Цилиндры со стороны ВМТ закрываются головкой, отливаемой из алю­миниевого сплава в одном блоке или отдельно на каждый цилиндр.

Источник

Поделиться с друзьями