Резонатор для двухтактного мотора

Расчет и изготовление резонатора для любого двухтактного двигателя

Я решил написать статью, потому что надоели всякие люди на сайте с идеями типа:, а можно ли поставить глушитель от Жигулей или еще от какого-нибудь четырехтатника на Ижак, преследуя лишь цель красоты. А то, что в глушители должен быть резонатор все думают, а зачем.

Но ведь в глушителе происходит сложное пульсирующее возвратно-поступательное движение волн газов, имеющее определенную частоту.
Для оптимально подобранного глушителя необходимо, чтобы к моменту закрытия выпускного окна обратная волна обеспечила возврат части отсосанной рабочей смеси в цилиндр. Иначе говоря, требуется достижение резонанса или согласования частоты собственных колебаний волны газов с частотой импульса этой волны на выпуске, т. е. с числом оборотов двигателя.
Но так как частота собственных колебаний волны зависит еще и от параметров глушителя (сечения, длины), а также от температуры газа в глушителе, необходим их тщательный подбор.
В глушителе такой важнейший параметр, как общая длина, подбирается изменением длины выпускной трубы и цилиндрической части глушителя

В наших с вами мотоциклах используется двигатель, рассчитанный на некие условия эксплуатации, потому и возможности моторов, условно говоря, — по показателям экономичности, долговечности, токсичности отработавших газов. На получение таких показателей и приспособлена технология массового производства, а это те рамки, которые порой сковывают конструкторов по рукам и ногам. Поэтому прок от индивидуальной доводки будет. Остается правильно поставить задачи и правильно их решить.
Формулы для расчета глушителей двух-тактников существуют, но они громоздки, трудно учесть все факторы. Хотя бы погодные. Не замечали, как меняется работа двигателя при изменении температуры воздуха или влажности? Или температура выхлопных газов: мало того, что в точке возле выпускного окна она не постоянна и сильно зависит от режима работы двигателя. Газы, двигаясь внутри резонатора, вначале рас ширяются, остывая при этом, а затем, сжимаясь в обратном конусе, вновь нагреваются и т. д. А ведь в основе расчета глушителя стоит скорость звука в выхлопных газах, которая напрямую зависит от температуры. Что же это за основа, если она постоянно меняется! Вот и остаются эти формулы на страницах диссертаций. Даже на заводах глушители рассчитывают упрощенным методом, потом доводят систему выпуска! на стенде, а затем, после дорожных испытаний, все равно что-то переделывают. ‘
Глушитель не может обеспечить прирост мощности во всем диапазоне оборотов. Его настраивают на тот режим, при котором стремятся получить прирост крутящего момента (а не мощности!). При этом волна выхлопных газов должна успеть пройти через весь резонатор, отразиться от обратного конуса и вернуться к выпускному окну в тот момент, когда оно еще открыто, а продувочные окна уже закрылись. Если волна придет раньше, то загонит часть рабочей смеси обратно в продувочные каналы. Если позже, — часть рабочей смеси успеет вылететь в трубу (выхлопную). И в том, и в другом случае крутящий момент (а, значит, и мощность) уменьшится. Самый важный размер — L (общая длина выпускной системы от выпускного окна до конца обратного конуса) можно рассчитать по формуле:
L=[(аПРОД+аВЫП)/720*1/n*33600]/2
где: аПРОД — фаза продувки (град.);
аВЫП — фаза выпуска (град.); n — обороты двигателя, на которых надо получить прибавку крутящего момента (об/мин);
33 360 м/мин — принимаемая средняя скорость волны газов в выхлопной трубе.
Чтобы получить аПРОД и аВЫП, снимите головку цилиндра и закрепите на роторе генератора транспортир (его центр должен строго совпадать с осью вращения коленвала). На генераторе сделайте начальную метку и, поворачивая, коленвал по ходу вращения, отмечайте углы, при которых кромка днища поршня окажется у верхнего края продувочных и выпускных окон.
Не надейтесь, что, подставив в формулу 15 000 об/мин, а затем установив, скажем, на Jawa, изготовленный по получившимся размерам резонатор, вы заставите мотор раскрутиться до этих оборотов. Все элементы двигателя этого мотоцикла сделаны таким образом, чтобы он выдавал максимальный крутящий момент на 3500 об/мин. Значит, и в формулу нужно подставить 3500 об/мин.
Получив общую длину выпускной трубы, можно определить приблизительный размер частей(рис.1).

Длина должна составить 20-28% от общей длины; передний (прямой) конус — 32-38%; цилиндрическая часть — 8-10% и обратный конус -30-35%. Диаметр — 63-70% от диаметра цилиндра, а площадь сечения трубки глушащей части — 65-75% от площади сечения . Диаметр средней цилиндрической части можно подсчитать, зная диаметр и длину переднего конуса. Обычно его угол при вершине делают около 12°.
Воспользовавшись знаниями из школьного курса тригонометрии, получим формулу:
ДСР =ДКОЛ + 0,21 *(умножить) LП.К.
где: Дср — диаметр средней цилиндрической части; Дкол — диаметр ; LП.К. -длина переднего конуса.

Так глушак рассчитали, теперь бы его сделать надо.
Колено выпускной трубы может быть изготовлено из прямой тонкостенной (1-1,25 мм) трубы либо подбором имеющегося колена от серийного мотоцикла. Радиус выгиба выпускной трубы подгоняется по раме мотоцикла и зависит от места расположения глушителя.
Чтобы изогнуть по нужному радиусу выпускную трубу, ее следует заварить с одного конца, наполнить сухим песком и плотно забить с другого конца деревянной пробкой.
Взять две паяльные лампы, разжечь их. Нагрев трубы производить по наружному радиусу, оставляя внутренний более холодным. Изгибать трубу следует медленно, чтобы не было трещин и складок, все время, сверяя радиус изгиба с заранее изготовленным шаблоном. Изгиб выпускной трубы можно производить на слесарных роликах, можно залить канифолью, водой и заморозить, и гнуть без нагрева.
Готовое изогнутое колено подгонять на мотоцикле по месту, так чтобы оно плотно входило в выпускной патрубок и глушитель, не мешало повороту переднего колеса и хорошо вписывалось в раму мотоцикла. Если это верхняя выпускная труба, то она не должна мешать работе гонщика на мотоцикле. Для надежного крепления выпускной трубы к ней приваривается кронштейн крепления, а также ушко для страховки от сползания ее с патрубка цилиндра. Фиксируется выпускная труба к цилиндру при помощи стальной проволоки.
Прямой конус и глушитель изготовляются из листовой стали толщиной 0.7-1 мм.
Желательно, чтобы глушитель был как можно ровнее и располагался в одной плоскости. Допускаются небольшие повороты отдельных частей глушителя при подгонке их по раме мотоцикла.

Читайте также:  Надувные лодки без мотора рейтинг

Следует уделить также внимание на крепление глушителя к раме мотоцикла. К глушителю привираются специальные кронштейны с овальными отверстиями под болты крепления. Толщина материала кронштейна 2,5 — 3 мм. Желательно делать два таких кронштейна, с тем, чтобы надежней было его крепление. Крепление выпускной системы должно быть не менее чем в двух точках, лучше в трех. Болты крепления глушителя желательно шплинтовать или ставить на них контргайки. Глушитель и выпускную трубу следует окрашивать в черный цвет. Желательно использовать огнеупорные краски. Но можно применять и нитрокраски.
Для изготовления выкроек конусов необходимо сделать маленькие расчеты и начертить эскиз развертки (рис. 2).

Например, нужно подсчитать длины развернутых окружностей входа и выхода в диффузор с тем, чтобы отложить их на радиусах, проведенных через точки пересечения дуги и концов конуса:
? * d1 = 3.14 *40 = 125.6 мм; ? * d = 3,14 * 90 = 282,6 мм
d1 = 44 мм; d = 90 мм
По развертке согнуть нужный диффузор, сварить, отрихтовать. Развертка заготовки для цилиндрической части подсчитывается:
? * d =3,14 90 = 282,6 мм.
Для изготовления глушителя вырезаются заготовки (см. рис. 2), сгибаются конусы и цилиндр. Автогенной сваркой производится прихватка, рихтовка конуса, окончательная сварка шва — встык.
Сварку производить горелкой малого размера (N 0, N 1) и тонкой проволокой толщиной 1,5-2 мм. После сварки деталей произвести окончательную рихтовку и подгонку частей глушителя друг к другу и по месту на раме мотоцикла.
Разметить, померить, прихватить по месту и, только убедившись, что все подогнано правильно, окончательно заварить круговые швы.
Можно изготовить и только отдельно резонатор тогда его можно приделать к патрубку как родной, но лучше сварить, и не мучится постоянным наматыванием айсбеста.
Глушащую насадку можно изготавливать уже как хочется, хоть ставить от копейки хоть от трактора, наиболее же оптимальный вариант оформлен в статье «только руки береги» (рис.3).

Источник

МОЙ МОТОЦИКЛ

Нередко можно встретить мотоциклы с одной лишь выхлопной трубой, без каких-либо изменений сечения внутри. Чаще всего так делают либо самые невежественные владельцы, либо желающие повысить проходимость любой ценой. Но наиболее совершенной на сегодняшний день является выпускная система, состоящая из мощностной заслонки, регулирующей высоту выпускных окон в зависимости от оборотов или нагрузки двигателя, и идущих за ней резонатора и глушителя.

Теперь обо всем по порядку.
Многочисленные исследования работы двухтактных двигателей внутреннего сгорания показывают, что с ненастроенной выпускной системой или совсем без нее у двигателя происходит потеря значительной части топливовоздушной смеси через выпускные окна, с которых, собственно, выпускная система и начинается. От их формы и размеров во многом зависит мощность и быстроходность мотора.

Угловая ширина выпускного окна ограничивается опасностью повреждения поршневых колец, и по данным исследований фирмы «Ямаха» не должна превышать 65 для серийных двигателей и 70 для спортивных. Если же нужно их увеличить, делают два или три окна, разделенные перемычками. Высота выпускных окон оказывает существенное влияние на мощность двигателя. Увеличение высоты ведет к быстрой очистке цилиндра от отработавших газов, что способствует повышению оборотов, но в то же время возрастает доля потерянного хода, так как после открытия выпускных окон газы уже не оказывают давления на поршень. Это приводит к снижению крутящего момента в области низких и средних частот вращения. Избавиться от таких нежелательных явлений и помогают мощностные заслонки, которые ограничивают высоту выпускных окон на низких и средних оборотах и полностью открывают их на высоких. Кстати, мощностные заслонки в настоящее время стали почти обязательной принадлежностью приличного двухтактного двигателя. К сожалению, изготовить в наших условиях такое эффективное устройство крайне сложно, поэтому мы не будем на нем долго останавливаться, а продолжим далее знакомство с выпускной системой. После выпускных окон, как правило, устанавливается резонатор, или мощностная часть, говоря по научному. Основная его задача — препятствовать выбросу свежей смеси. Выбор оптимальных параметров резонатора достаточно сложен, но я попытаюсь внести ясность в этот вопрос.
Для благоприятного протекания процесса газообмена необходимо, чтобы у выпускного окна в первой половине фазы продувки создавалось невысокое разрежение, способствующее очистке цилиндра от отработавших газов. К моменту подхода продувочной смеси к выпускному окну давление в выпускной системе (у окна) должно возрасти и поддерживаться в таком состоянии до его закрытия. Эта волна давления создает обратное движение в цилиндр части продувочной смеси, попавшей в систему выпуска при продувке.
При неблагоприятном изменении давления может произойти «закупоривание» выпускной системы, ухудшающее очистку и наполнение цилиндра. Значительное разрежение в системе выпуска в конце продувки способствует беспрепятственному выбросу горючей смеси через выпускное окно.
Настройка выпускной системы, как правило, осуществляется на один режим работы. Она сводится к подбору геометрических размеров резонатора, показанного на рисунке 2.
Отработавшие газы, вырываясь из выпускных окон со сверхзвуковой скоростью, устремляются в резонатор, который сначала расширяется, образуя так называемый прямой конус, а затем сужается, образуя обратный конус. При этом давление газов сначала снижается, а после возрастает. Возникает отраженная волна, устремляющаяся назад к цилиндру. Для каждой конкретной выпускной системы эта волна имеет определенную скорость. В результате настройка выпускной системы заключается в подборе длин и диаметров резонатора таким образом, чтобы отраженная волна подходила к выпускным окнам в нужный момент. Естественно, что для разных частот вращения коленчатого вала требуется своя конкретная выпускная система, которая на других частотах, к сожалению, не может обеспечить оптимальных условий выпуска отработавших газов. Приходится идти на компромисс, выбирая наиболее предпочтительную частоту, на которой будет идти отсос отработавших газов и дозарядка цилиндра. В большинстве случаев эти оптимальные обороты находятся в диапазоне между средними и высокими. На мотоциклах с хорошо настроенной выпускной системой нередко замечается резкий подхват при достижении определенных оборотов. Зачастую он сопровождается таким ускорением, что незадачливому экспериментатору, не привыкшему к подобным сюрпризам, может представиться случай лицезреть удаляющийся от него на заднем колесе мотоцикл, догнать который уже невозможно.

Читайте также:  Мотор для заз 965

Тем же, кому подобный характер мотора по душе, можно посоветовать попробовать настроить систему выпуска своего мотоцикла, используя некоторые приведенные ниже зависимости и соотношения размеров по рисунку:

D1=sqrt((4*F1/pi));
где F1:=(1.3—1.75)*F0вып;
F0вып:площадь сечения выпускных окон.
F1:площадь сечения выпускной трубы.
При увеличении L1 кривая изменение крутящего момента сдвигается в сторону
малых частот вращения, а при уменьшении L1 — в область высоких частот.
Оптимальная длина
L1:=(5—6)*D1.
Угол *alfa* раскрытия первого конуса принимается из условия обеспечения
безотрывного прохождения потока газа
alfa:=6…10гр .
Длина конической части L2 определяется углом *alfa* и диаметром D2,
который принимается из соотношения
D2:=sqrt((4*F2/pi));
где F2:=(3.5—4.5)*F1;
F1:площадь сечения выпускной трубы.

Изменяя длину L3 цилиндрической части и положение обратного конуса, можно смещать характеристику двигателя в необходимом направлении. Выбирая длину L3 можно повысить максимальную эффективную мощность в определенном диапазоне частот вращения благодаря дозарядке цилиндра. Однако на других частотах происходит ухудшение показателей. С увеличением длины L3 уменьшается максимальная мощность но значительно возрастают ее значения в диапазоне средних оборотов. Длина L4 обратного конуса влияет на показатели двигателя следующим образом. Если конус участка L4 невелик (большая длина L4 ), то мощность двигателя при оборотах выше номинальных снижается медленно. При малой длине L4 мощность падает быстро. Рекомендуемая длина L4:=(1—2.5)D1 Концевой участок трубы длиной L5 также оказывает некоторое влияние на показатели двигателя, При росте L5 и уменьшении диаметра максимальная мощность двигателя смещается в область высоких частот вращения. Уменьшение длины L5 способствует повышению мощности на малых оборотах. Уменьшение диаметра D3 вызывает перегрев днища поршня. Глушащая часть выпускной системы положительного влияния на мощность не оказывает, зато благоприятно сказывается на состоянии органов слуха. Огромные, сигаровидные глушители отечественных мотоциклов включают в себя сразу мощностную и глушащую части, а выхлопная труба является отдельным элементом. Нередко она входит в прямой конус настолько глубоко, что нарушается безотрывный характер истечения газов. В таком случае идеальным был бы вариант отказа от соединения трубы и конуса с помощью накидной гайки или хомута в пользу сварки. По крайней мере, следует укоротить выступающую внутрь конуса часть. Здесь же кроется самый простой способ частичной настройки выпускной системы. Можно пододвинуть глушитель вперед, укоротив выхлопную трубу. При этом следует ожидать улучшения работы мотора на высоких оборотах, либо наоборот, для получения большей тяговитости на низких оборотах отодвинуть глушитель подальше и удлинить первую трубу. Удлинение или сокращение цилиндрического участка также не вызовет сложностей. Глушитель распиливается, и из него удаляется либо вваривается кусок необходимой длины.

Кроме формирования характеристик двигателя и снижения шума выхлопа, выпускная система рассеивает в пространство значительную часть тепла. Так, однажды во время дальней поездки на «ИЖе» автор проголодался и остановился на обед. Запах, исходящий от мотоцикла, наводил на мысль, что еда уже готова. После поисков источника запаха из сумки, стоящей на нижней полке багажника и касающейся глушителя, был извлечен изрядно поплавившийся пакет с почти готовой яичницей. Подвеска тщательно перемешала все составляющие блюда, а глушитель его поджарил. Жаль, только, что мотоцикл не отделил скорлупу от яиц и обертку от масла! В большинстве же случаев нежелательный контакт с выпускной системой заканчивается не .так удачно. Возможны ожоги и даже пожар. Про это не следует забывать при модернизации или самостоятельном изготовлении выпускной системы

Читайте также:  111 мотор мерседес ресурс

А. Гарагашьян, Ленинградская обл., д. Нюрговичи

Источник

Дневник самодельщика

Зачем двухтактному двигателю нужен резонатор выхлопа.

Как не странно , но даже в в наш век технического прогресса и общедоступного интернет многие мотоциклисты не знают что двухтактному двигателю жизненно необходима выхлопная система специальной конструкции. Все дело в том, что в двухтактных двигателях рабочий цикл (от латинского – cyclus – окружность, означает повторяющиеся действия) состоит из двух тактов, начинается в начале первого такта и заканчивается в конце второго такта.

Рассмотрим их:
1-й такт:

Поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. Когда поршень доходит до ВМТ первый такт заканчивается, и начинается второй.
2-й такт:

После сжатия топливной смеси свеча, установленная в головке цилиндра, производит электрический разряд, то есть попросту искру, при этом сжатая топливо-воздушная смесь воспламеняется, сгоревшее топливо становится горячим газом, который стремится увеличится в объёме и давит на поршень вниз. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджог, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработанные газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор.
Смотрим шикарную анимацию в начале поста.
Синим показан воздух который засасывается разрежением в Кривошипно-Шатунной камеры по пути насыщаясь топливом которое распыляется из топливной форсунки – инжектора (в карбюраторных двигателях этим занимается карбюратор) смесь воздуха и топлива в правильных пропорциях называют топливо-воздушной или рабочей смесью, она обозначена на анимации зелёным цветом, попадая в цилиндр и сжимаемая поршнем рабочая смесь нагревается, на схеме это обозначено изменением цвета с зелёного на красный, ну и серым обозначена сгоревшая смесь и видимо символизирует дым.

Так вот о «шикарности» этой анимации, на ней очень понятно показано зачем двухтактному двигателю резонатор (резонатор в данном случае это совокупность конусов которые вы видите в «выхлопной трубе»), как видно из-за конструкции резонатора часть ударной волны «выхлопа» отправляется в обратный путь, заталкивая своей энергией часть свежей рабочей смеси которая стремилась улизнуть, этим увеличивается мощность, потому что больше рабочей смеси сгорает и выделяется больше энергии, и этим улучшается экономичность – представьте если бы не было резонатора часть топлива, за которое вообще то уплочено, просто вылетало бы «в трубу» в буквальном смысле. Так-же стоит отметить что резонатор для каждого двигателя рассчитывается индивидуально.
Все выше сказанное замечательно, но….
В наших с вами мотоциклах используется двигатель, рассчитанный на некие условия эксплуатации, потому и возможности моторов, условно говоря, — по показателям экономичности, долговечности, токсичности отработавших газов. На получение таких показателей и приспособлена технология массового производства, а это те рамки, которые порой сковывают конструкторов по рукам и ногам. Поэтому прок от индивидуальной доводки будет. Остается правильно поставить задачи и правильно их решить.
Формулы для расчета глушителей двухтактников существуют, но они громоздки, трудно учесть все факторы. Хотя бы погодные. Не замечали, как меняется работа двигателя при изменении температуры воздуха или влажности? Или температура выхлопных газов: мало того, что в точке возле выпускного окна она не постоянна и сильно зависит от режима работы двигателя. Газы, двигаясь внутри резонатора, вначале расширяются, остывая при этом, а затем, сжимаясь в обратном конусе, вновь нагреваются и т. д. А ведь в основе расчета глушителя стоит скорость звука в выхлопных газах, которая напрямую зависит от температуры. Что же это за основа, если она постоянно меняется! Вот и остаются эти формулы на страницах диссертаций. Даже на заводах глушители рассчитывают упрощенным методом, потом доводят систему выпуска! на стенде, а затем, после дорожных испытаний, все равно что-то переделывают.

Источник

Поделиться с друзьями