Схема подключения датчиков холла мотор колеса

Как проверить датчики Холла в мотор-колесе?

Датчики Холла – это маленькие электронные устройства, реагирующие на магнитное поле. Именно по ним синхронный двигатель узнает, в каком положении в данный момент времени пребывает ротор, и подает напряжение на определенные фазы. Вот зачем нужны датчики Холла в мотор-колесе – они отвечают за правильное чередование фаз и обеспечивают вращение мотора. Эффект Холла используется при создании датчиков положения, устанавливаемых в редукторных и прямоприводных мотор-колесах электровелосипедов и других видов транспорта.

Кроме мотор-колес, такие элементы (но только другого типа) устанавливаются в ручках газа. Они создают управляющий сигнал для контроллера. Принцип их работы заключается в создании в проводнике с током, находящемся в магнитном поле, поперечной разности потенциалов. Внешне такие датчики представляют собой компактные устройства с 3 выводами – аналоговым или цифровым и 2 выводами питания. От индуктивных датчиков они выгодно отличаются пропорциональностью выходного сигнала магнитному полю, а не скорости его изменения.

Причины и диагностика поломки датчиков положения

Причиной поломки датчиков Холла могут стать:

  • значительный перегрев электромотора – выше 150–180 °С;
  • механические повреждения;
  • скачки напряжения;
  • попадание воды внутрь корпуса электродвигателя или ручки газа.

Явным признаком поломки датчиков Холла считается подергивание МК при старте во время поворота ручки газа. Для диагностики такой неисправности достаточно вольтметра. Также для проверки работоспособности мотор-колеса, контроллера или ручки газа удобно воспользоваться диагностирующим тестером. Он позволяет продиагностировать датчики положения и обмотки, выявить имеющиеся дефекты, проверить фазовый угол и корректность переключения фаз.

Мониторинг работы ручки газа

На ручку газа от контроллера идет 3 провода:

  1. «ноль» – черный;
  2. питание 5 В – красный;
  3. управляющий сигнал, подающийся с ручки газа на контроллер (напряжение меняется в диапазоне 0–4,2 В, в зависимости от угла поворота ручки) – зеленый.

Для проверки работоспособности датчиков Холла в ручке акселератора необходимо измерить вольтметром напряжение на красном проводе. К нему нужно подключить «+» клемму прибора, а к черному проводу – минусовую. Если в исследуемой цепи нет напряжения 5 В, причина неполадок кроется не в ручке газа. Возможно, неисправен контроллер, или на него не поступает питание, или произошел обрыв проводки, идущей от контроллера к ручке акселератора.

Если же вольтметр показывает подачу напряжения на ручку акселератора, но при ее плавном повороте напряжение на зеленом проводе отсутствует, причина неполадок кроется в неисправности, как минимум, одного из датчиков Холла или подходящих к нему проводов. Неисправные элементы подлежат замене.

Проверка датчиков Холла в мотор-колесе

Перед ремонтом мотор-колеса нужно при помощи тестера или вольтметра проверить состояние датчиков Холла. Алгоритм действий таков: подключить тестер или подать напряжение +5 В и, вращая ось мотора, понаблюдать за изменением напряжения на сигнальной ноге. Проще поддаются ремонту моторы с винтами в боковой крышке. Если же крышка имеет резьбу, открутить ее сложнее – понадобятся специальные съемники.

Если при разборке мотора окажется, что обмотки потемнели (сгорели), восстановлению он не подлежит. Если же с обмотками все в порядке, обратите внимание на провода, идущие через ось к 3 миниатюрным датчикам. Обычно они посажены на силиконовый клей в нише, совпадающей по форме с геометрий корпуса датчика.

Замена датчиков Холла

Суть ремонта сводится к замене неисправных датчиков и восстановлению провода (при необходимости). Неисправные датчики нужно заменить – извлечь из паза в статоре, удалить остатки электронного устройства и следы клея, зачистить место монтажа и установить новые элементы. Контакты нужно припаять и изолировать. Для фиксации новых датчиков можно воспользоваться эпоксидной смолой или подходящим клеем. После ремонтных работ остается проверить исправность МК.

На видео наглядно демонстрируется, как работает мотор-колесо с неисправным датчиком Холла, поясняется, как выявить нерабочий датчик и правильно заменить его.

Источник

Разбираемся с датчиками холла в электротранспорте

  • Сообщений: 279
  • Город: Москва Последний визит:
    Сегодня в 10:36

Итак датчики холла.

Сущность эффекта, открытого в 1879 г. американским физиком Э. Холлом, заключается в появлении разности потенциалов между гранями полупроводниковой пластины, через которую протекает ток и на которую воздействует перпендикулярное магнитное поле. Разность потенциалов прямо пропорциональна силе тока и квадрату магнитной индукции.

Читайте также:  Как сделать турбо мотор своими руками

Эффект Холла широко применяется в бесконтактных датчиках тока. Другое направление — датчики перемещения, в которых элемент Холла крепится к неподвижному шасси, а собственно магнит находится на движущейся части исследуемого объекта. Поскольку выходной сигнал датчика Холла пропорционален индукции магнитного поля, а не скорости его изменения, это даёт серьёзное преимущество в точности по сравнению с аналогичными по назначению индуктивными датчиками.

Магниточувствительные элементы, использующие эффект Холла, обычно называют «датчиками Холла» (англ. «Hall Sensor»). Различают простые и интегральные датчики Холла. В последних кроме полупроводниковой пластины содержится встроенный усилитель-формирователь. Типовые параметры интегральных датчиков Холла: напряжение питания 2.5…5 В или 4.5… 18 В, ток потребления 8…20 мА, минимальная регистрируемая магнитная индукция 2… 10 мТл, выходной сигнал — аналоговый (модулированное по амплитуде напряжение) или цифровой (открытый коллектор, КМОП-элемент, импульсы ШИМ).

Датчики Холла – это маленькие электронные устройства, реагирующие на магнитное поле. Именно по ним синхронный двигатель узнает, в каком положении в данный момент времени пребывает ротор, и подает напряжение на определенные фазы. Вот зачем нужны датчики Холла в мотор-колесе – они отвечают за правильное чередование фаз и обеспечивают вращение мотора.

Итак обычно, в мотор-колесах размещено 3 датчика холла модели SS41F меняются все разом либо на такую же модель.

Аналоги которые упоминаются в интернете: TLE4945L.

Совершенно безразлично, какие у Вас моторы и ручки/педали газа — везде используются и/или могут использоваться эти датчики — SS41 в моторах и SS49 в ручках/педалях газа.

Тестируются датчики на МК(мотор-колесе) очень просто: Подавая на + ток и вращая колесо на выходе будем снимать до 5В. К сожалению в РФ датчики достаточно дорогие. Поэтому я взял себе сразу небольшую партию вот здесь на Алике.

Будет время сниму видео по диагностике и замене датчиков хола в МК.

Источник

Датчики Холла для бесколлекторного двигателя: возвращение квадратурных энкодеров

Это уже третья статья, рассказывающая о квадратурных декодерах, на сей раз с применением к управлению бесколлекторными двигателями.

  • Статья первая: принцип работы квадратурного декодера + код для ардуино.
  • Статья вторая: квадратурный декодер на stm32.

Задача: есть обычный китайский бесколлекторник, нужно его подключить к контроллеру Copley Controls 503. В отличие от копеечных коптерных контроллеров, 503й хочет сигнал с датчиков холла, которых на движке нет. Давайте разбираться, для чего нужны датчики и как их ставить.

Ликбез: принцип работы бесколлекторного двигателя

В качестве иллюстрации я возьму очень распространённый двигатель с двенадцатью катушками в статоре и четырнадцатью магнитами в роторе. Вариантов намотки и количества катушек/магнитов довольно много, но суть всегда остаётся одной и той же. Вот фотография моего экземпляра с двух сторон, отлично видны и катушки, и магниты в роторе:

Чтобы было ещё понятнее, я нарисовал его схему, полюса магнитов ротора обозначены цветом, красный для северного и синий для южного:

На датчики холла пока не обращайте внимания, их всё равно нет 🙂

Что будет, если подать плюс на вывод V, а минус на вывод W (вывод U не подключаем ни к чему)? Очевидно, будет течь ток в катушках, намотанных зелёным проводом. Катушки намотаны в разном направлении, поэтому верхние две катушки будут притягиваться к магнитам 1 и 2, а нижние две к магнитам 8 и 9. Остальные катушки и магниты в такой конфигурации роли практически не играют, поэтому я выделил именно магниты 1,2,8 и 9. При такой запитке мотора он очевидно крутиться не будет, и будет иметь семь устойчивых положений ротора, равномерно распределённых по всей окружности (левая верхняя зелёная катушка статора может притягивать магниты 1, 3, 5, 7, 9, 11, 13).

Давайте записывать наши действия вот в такую табличку:

Угол поворота ротора U V W
n.c. +

А что будет, если теперь подать плюс на U и минус на W? Красные катушки притянут к себе магниты 3,4,10 и 11, таким образом чуть-чуть повернув ротор (я по-прежнему выделяю магниты, за которые ротор тянет):

Давайте посчитаем, на сколько повернётся ротор: между щелями магнитов 1-2 и 3-4 у нас 51.43° (=360°*2/7), а между соответствующими щелями в статоре 60° (=360°/12*2). Таким образом, ротор провернётся на 8.57°. Обновим нашу табличку:

Угол поворота ротора U V W
8.57° + n.c.
Читайте также:  Ремонт лодочных моторов киевская 32

Теперь сам бог велел подать + на U и — на V!

Угол поворота ротора U V W
17.14° + n.c.

Теперь опять пора выровнять магниты с зелёными катушками, поэтому подаём напряжение на них, но красный и синий магниты поменялись местами, поэтому теперь нужно подать обратное напряжение:

Угол поворота ротора U V W
25.71° n.c. +

C оставшимися двумя конфигурациями всё ровно так же:

Угол поворота ротора U V W
34.29° n.c. +

Угол поворота ротора U V W
42.85° + n.c.

Если мы снова повторим самый первый шаг, то наш ротор провернётся ровно на одну седьмую оборота. Итак, всего у нашего мотора три вывода, мы можем подать напряжение на два из них шестью разными способами 6 = 2*C 2 3, причём мы их все уже перебрали. Если подавать напряжение не хаотично, а в строгом порядке, который зависит от положения ротора, то двигатель будет вращаться.

Запишем ещё раз всю последовательность для нашего двигателя:

Угол поворота ротора U V W
n.c. +
8.57° + n.c.
17.14° + n.c.
25.71° n.c. +
34.29° n.c. +
42.86° + n.c.

Есть один нюанс: у обычного коллекторного двигателя за переключение обмоток отвечают щётки, а тут нам надо определять положение ротора самим.

Датчики Холла

Теперь давайте поставим три датчика холла в те чёрные точки, обозначенные на схеме. Давайте договоримся, что датчик выдаёт логическую единицу, когда он находится напротив красного магнита. Всего существует шесть (сюрприз!) возможных состояний трёх датчиков: 2 3 — 2. Всего возможных состояний 8, но в силу расстояния между датчиками они не могут все втроём быть в логическом нуле или в логической единице:

Обратите внимание, что они генерируют три сигнала, сдвинутые друг относительно друга на 1/3 периода. Кстати, электрики используют слово градусы, говоря про 120°, чем окончательно запутывают нубов типа меня. Если мы хотим сделать свой контроллер двигателя, то достаточно читать сигнал с датчиков, и соответственно переключать напряжение на обмотках.

Для размещения датчиков я использовал вот такую платку, дизайн которой взял тут. По ссылке лежит проект eagle, так что я просто заказал у китайцев сразу много подобных платок:

Эти платки несут на себе только три датчика холла, больше ничего. Ну, по вкусу можно поставить конденсаторы, я не стал заморачиваться. Очень удобно сделаны длинные прорези для регулировки положения датчиков относительно статора.

Постойте, но ведь это очень похоже на квадратурный сигнал с обычного инкрементального энкодера!

Ещё бы! Единственная разница, что инкрементальные энкодеры дают два сигнала, сдвинутые друг относительно друга на 90°, а у нас три сигнала, сдвинутые на 120°. Что будет, если завести любые два из них на обычный квадратурный декодер, например, той же самой синей таблетки? Мы получим возможность определять положение вала с точностью до четырёх отсчётов на одну седьмую оборота, или 28 отсчётов на оборот. Если вы не поняли, о чём я, прочтите принцип работы квадратурного декодера в первой статье.

Я долго думал, как же мне использовать все три сигнала, ведь у нас происходит шесть событий на одну седьмую оборота, мы должны иметь возможность получить 42 отсчёта на оборот. В итоге решил пойти грубой силой, так как синяя таблетка имеет кучу аппаратных квадратурных декодеров, поэтому я решил в ней завести три счётчика:

Видно, что при каждом событии у нас увеличиваются два из них, поэтому сложив три счётчика, и поделив на два, мы получим равномерно тикающий определитель положения вала, с точностью до 6*7 = 42 отсчёта на оборот!

Вот так выглядит макет подключения датчиков Холла к синей таблетке:

А почему на двигателе сразу нет датчиков?

В некоторых приложениях (например, для коптеров) все эти заморочки не нужны. Контроллеры пытаются угадать происходящее с ротором по току в катушках. С одной стороны, это меньше заморочек, но с другой стороны, иногда приводит к проблемам с моментом старта двигателя, поэтому слабоприменимо, например, в робототехнике, где нужны околонулевые скорости. Давайте попробуем запитать наш движок от обычного китайского коптерного ESC (electronic speed controller).

Мой контроллер хочет на вход PPM сигнал: это импульс с частотой 50Гц, длина импульса задаёт обороты: 1мс — останов, 2мс — максимально возможные обороты (считается как KV двигателя * напряжение).

Вот здесь я выложил исходный код и кубовские файлы для синей таблетки. Таймер 1 генерирует PWM для ESC, таймеры 2,3,4 считают соответствующие квадратурные сигналы. Поскольку в прошлой статье я крайне подробно расписал, где и что кликать, то здесь только даю ссылку на исходный код.

Читайте также:  Бесколлекторный мотор для электросамоката

На вход моему ESC я даю пилообразное задание скорости, посмотрим, как он его отработает. Вывод синей таблетки лежит тут, а код, который рисует график, тут.

Поскольку у меня двигатель имеет номинал 400KV, а питание я подал 10В, то максимальные обороты должны быть в районе 4000 об/мин = 419 рад/с. Ну а вот и график подоспел:

Видно, что реальные обороты соответствуют заданию весьма приблизительно, что терпимо для коптеров, но совершенно неприменимо во многих других ситуациях, почему, собственно, я и хочу использовать более совершенные контроллеры, которым нужны сигналы с датчиков холла. Ну и бонусом я получаю угол поворота ротора, что бывает крайне полезно.

Подводим итог

Я провёл детство в обнимку с этой книжкой, но раскурить принципы работы бесколлекторников довелось только сейчас.

Оказывается, что шаговые моторы и вот такое коптерные моторчики — это (концептуально) одно и то же. Разница лишь в количестве фаз: шаговики (обычно, бывают исключения) управляются двумя фазами, сдвинутыми на 90°, а бесколлекторники (опять же, обычно) тремя фазами, сдвинутыми на 120°.

Разумеется, есть и другие, чисто практические отличия: шаговики рассчитаны на увеличение удерживающего момента и повторяемость шагов, в то время как коптерные движки на скорость и плавность вращения, что сказывается на количестве обмоток, подшипниках и т.п. Но в итоге обычный бесколлекторник можно использовать в шаговом режиме, а шаговик в постоянном вращении, управление у них будет одинаковым.

Update: красивая анимация от Arastas:

Источник

Схема подключения датчиков холла мотор колеса

Почти все современные контроллеры, а тем более покупные, умеют заставить работать мотор колесо без датчиков холла, которые, как многие утверждают, весьма ненадежные. Хотя лично у меня ни разу в жизни подобного инцидента не было. Дело все в том, что датчики холла ставятся на почти всех шаговых моторах, и лишь за редким исключением они могут отсутствовать. Так перелопатив кучу аппаратуры, я лично проблемы такой не встречал, чтобы они резко или без причинно выгорали, или замыкали. В связи с тем, что данная затея, а именно работа мотор колеса без ДХ, пришлась по вкусу многим потребителям электротранспорта, ну и появилась востребованность. Китай по началу производил всего лишь часть контроллеров для мотор колеса, снабжённых данным режимом, и чем дальше это пользовалось спросом, тем процент был выше.

И вот, на сегодняшний момент, к сожалению, данной функцией обладают наверно около 90% современных контроллеров, а без этой функции найти контроллер уже, к сожалению, проблема.

Почему, к сожалению, все дело в том, что функция работы без датчиков холла приоритетная, а не адаптивная, как это может показаться в видео ролике. Что это значит, все очень просто, если при езде произойдет проблема с датчиками холла, микроконтроллер запомнит последние данные работы мотора и просто отключит на ходу их, и будет ехать как и раньше, причем о выходе их из строя вы даже не узнаете.

Многие скажут, это же хорошо, от части это так, но когда данный режим приоритетный, к сожалению, существует задержка при движении, которая приводит к тупизне отклика акселератора на включение мотора. Для тех кто в теме, тот поймет. В общем, контроллер отдает команды дольше из-за их анализа и принимает решения так же дольше. Хоть это всего лишь доли секунды, но при переходе с одного контроллера на другой складывается впечатление, что чего-то не хватает, а мощность мотора уже не та. Вот такие реалии нового контроллера.

А если добавить тупизну и рывки на старте, которые толком не лечатся, особого плюса для обычного потребителя данная функция не принесет.

Да и еще применяя разные контроллеры одной и той же мощности, я сделал вывод, что максимальная скорость зачастую зависит от прошивки, и может сильно варьироваться при одной и той же мощности контроллера на 36/48В от 10 до 35 км/ч в зависимости от мощности мотор колеса.

А повышение мощности контроллера для электротранспорта и при условии, что мотор будет тем — же самым зачастую незаметен для пилота, что уже доказано ни в одном из предыдущих обзоров.

Ну и как происходит жесткий переход на работу без датчиков холла на универсальном контроллере можно наблюдать в данном видео :

Источник

Поделиться с друзьями