Ультразвуковой мотор для объектива

Технологии фокусировки

Когда мы разглядываем фотографию или смотрим видео, мы сразу обращаем внимание, в фокусе изображение или нет.

С 1987 года, когда компания Canon стала первой, кто встроил мотор фокусировки в объектив, было создано несколько моторов для фокусировки и слежения за быстро движущимися объектами. При этом фокусировка остается точной, плавной и бесшумной.

В настоящее время в объективах Canon используется три основных типа моторов фокусировки. Это шаговый мотор (STM), ультразвуковой мотор (USM) и мотор постоянного тока (DC). Давайте рассмотрим различия между этими моторами, чтобы вы могли выбрать подходящий объектив.

Объективы STM позволяют создавать отличные фотографии и более качественное видео. Эти объективы оснащены шаговым мотором, который обеспечивает плавную и бесшумную фокусировку — две отличные характеристики для видеосъемки.

Некоторые моторы, используемые в объективах, при фокусировке издают отчетливые механические звуки, а объективы STM работают очень тихо, позволяя записывать естественный звук без посторонних шумов. Технология STM от Canon используется в ряде объективов, работающих тихо и достаточно быстро для фотосъемки почти в любой ситуации.

STM с шестеренчатой передачей

Наша линейка сверхкомпактных объективов STM, в том числе EF 50mm f/1.8 STM, оснащена STM шестеренчатого типа — очень маленьким мотором, который управляет блоком фокусировки с помощью косозубых шестеренок.

STM с винтовой передачей

Объективы STM, оснащенные шаговым мотором с винтовой передачей, немного больше по размерам, но работают тише и быстрее по сравнению с объективами с мотором шестеренчатого типа.

Ультразвуковой мотор (USM)

В настоящее время ультразвуковой мотор (USM) для автофокусировки чаще всего используется в объективах Canon серии EF. Ультразвуковой мотор преобразует энергию ультразвуковой вибрации во вращающую силу для управления объективом. В настоящее время этот мотор обеспечивает самую быструю фокусировку в линейке Canon, и при этом у вас есть возможность вручную подстраивать фокусировку, не отключая автофокус.

Ультразвуковой мотор кольцевого типа

Ультразвуковой мотор кольцевого типа используется в большинстве профессиональных объективов Canon — обеспечивает управление фокусом, а также высокую скорость и точность. Ультразвуковой мотор обладает достаточной мощностью для простой и быстрой работы с тяжелыми группами линз в телеобъективах и при этом обходится без зубчатой передачи, снижающей скорость. Ультразвуковые моторы также обладают способностью удерживать группу линз на месте при выключении мотора, без вмешательства с вашей стороны. Ультразвуковой мотор кольцевого типа работает не абсолютно бесшумно, как шаговый двигатель, но невероятно тихо, учитывая его производительность.

Механизм ультразвукового мотора кольцевого типа состоит из ротора и статора — эластичного модуля с прикрепленным к нему пьезоэлектрическим керамическим элементом. При подаче переменного тока с резонансной частотой около 30 000 Гц на статор создаются вибрации, вызывающие непрерывное вращение ротора. 30 000 Гц — это ультразвуковая частота, поэтому мотор называется ультразвуковым.

Источник

nesovet

мастерская lensservis.ru

Ультразвуковой мотор автофокуса. Ремонт.

Самые массовые китовые объективы 18-55 у кэнона, никона, сони и других.
С этих объективов все начинают.
И потом они ломаются. Ломаются, когда уже приходит пора переходить на более продвинутые.
Они и сделаны на год не больше и то, если бережно к ним относиться.
Даже прибережном отношении со временем пластиковые детали начинают затирать.
Прилагается больше усилий, направляющие гнутся и зум ломается.
У меня об этом есть в постах по ремонту механики.
Этот пост про ремонт ультразвукового мотора, который просто изнашивается со временем.

Читайте также:  Мотор гибдд по нижегородской области

Как извлечь мотор, я не пишу, нет ничего проще.

В моторе нечему ломаться, три детали.

Для усложнения задачи сломаем шлейф.

Ремонтируется прсто, всего три провода, средний земля.
И немного о работе самого двигателя, может, кто не знает.
На металлическое кольцо с ножками наклеены пъезопластины.
Когда к ним подается напряжение с частотой резонанса детали,это статор, он начинает колебаться.
Частота примерно 30 кГц, поэтому ультразвуковой мотор.
Ножки толкают ротор и происходит фокусировка.

Плата мотора выглядит так. DC-DC блок питания и 2 фазоинвертора, три провода к мотору.

Для сравнения просто электромотор не ультразвуковой, у кэнона выглядит так.

Разводка USM мотора имеет ещё один немаловажный контакт.
Это четвёртый контакт подстройки частоты блока питания.
Дело в том, что резонансная частота статора меняется в зависимости от температуры.
Если частота питания отличается от резонансной частоты, двигатель работает медленнее.
Нужно сказать, что с подстройкой частоты заморачивается только кэнон, сигма не особо.

Три контакта у сигмы.


Это кэноновский в процессе ремонта, 4 провода.

По большому счёту при сборке объектива на заводе частота блока питания должна подстраиваться до резонансной частоты статора.
В таком случае тупая замена мотора при ремонте невозможна. Нужно подстраивать частоту.

Вернемся к нашему мотору.
Поверхность статора очень чувствительна ко всяким инородным предметам, типа песчинок и нужна хорошая чистота поверхности ножек.
На работу двигателя влияет чистота поверхности и усилие прижимной пружины.
Будем считать, что усилие пружины не изменяется со временем, а вот поверхность истирается.
Я пробую шлифовать поверхность несколькими способами.
Для начала наждачкой 2500, результат плохой.
Ротор сразу нарабатывает задиры и двигатель клинит.
Пробую шлифовать в зеркало на войлочном круге.

Поверхность красивая, но ротор, как бы прилипает, пищит и двигатель плохо вращается.

Последний способ и самый результативный шлифовка с пастой гои на зеркале.

Оказалось важно даже не чистота поверхности а её плоскостность.

Нет предела совершенству.

Шлейф меняется просто

Провода напаиваются и покрываются поксиполом.

Здесь одна тонкость, прижим деталей усиливается за счёт увеличения толщины статора и двигатель может не пойти.
Лишний клей убираем.

Пружину можно укоротить, но тогда прижим будет совсем непонятный.
В сборе, как то так.

Отдельно двигатель вращается.

С редуктором вращается

Тубус объектива вращает

Это для общего развития замер напряжения на двигателе.
Пиковое напряжение доходит до 19 вольт, бъет чувствительно.

А знаете как проверить работает ли статор отдельно?
Погрузить его в воду и получите фонтан. Я не снял, а сейчас уже лень разбирать двигатель.

Да и ещё, эти двигатели не ремонтопригодны их просто меняют.
Причем, если заменить на донорский с поломанного объектива, неизвестно сколько он проработает.

Источник

hammerzeit

среда, 12 июня 2013 г.

Как работают автофокус камеры и ультразвуковой мотор в объективе

Интересно, что до сих пор не задумывался, как работает автофокус в камере.

Читайте также:  Греется лодочный мотор тохатсу

Оказывается, там под основным полупрозрачным зеркалом (толстая чёрная линия под 45 градусов на картинке), которое отводит часть света на видоискатель (8), есть ещё одно «вспомогательное» полупрозрачное зеркало (3), забирающее часть света, идущего на матрицу (4), на нужды сенсора автофокуса (7):

Сенсор автофокуса имеет несколько «зон» («зоны автофокуса», которые соответствуют определённым местам в кадре), над каждой из которых расположена маленькая линза. У каждой «зоны автофокуса» под линзой есть два маленьких сенсора: условно «левый», принимающий только «левую» сторону света, пришедшего из объектива, и условно «правый», принимающий только «правую» сторону света, пришедшего из объектива.

Изображение на этих двух маленьких сенсорах будет совпадать, если объектив сфокусирован правильно (другими словами, если «красный» луч света на картинке попадает точно в центр «красного» сенсора, и «зелёный» луч света на картинке попадает точно в центр «зелёного» сенсора, то изображение на этих двух маленьких сенсорах будет совпадать, объектив сфокусирован правильно).

Алгоритм автоматического поиска фокуса работает так (случаи пронумерованы как на картинке):

1. Линза объектива выдвинута слишком близко. Фотоаппарат может это угадать, заметив, что картина распределения интенсивностей такая же, как если бы она состояла из двух одинаковых картин интенсивностей, сдвинутых друг относительно друга (это можно сразу засечь, чуть-чуть сдвинув фокусировочную линзу объектива; алгоритм угадывания выполняется на процессоре фотоаппарата).

2. Объектив сфокусирован точно — две одинаковые световые картины максимально наложились друг на друга.

3. Линза объектива выдвинута слишком далеко.

4. Вообще не в фокусе.

Для того, чтобы этот алгоритм давал верные результаты, очевидно, требуется, чтобы сенсор автофокуса и матрица были равноудалены от «вспомогательного» полупрозрачного зеркала.

А ещё сейчас в моде объективы с «ультразвуковым мотором».
Звучит-то как!
Прямо как «лазерный принтер».
Наверняка в 90-ых, услышав в первый раз о таких принтерах, первое, что каждый себе представлял — это как принтер выжигает на бумаге изображение разноцветными лазерами из фантастических фильмов.

Оказалось, что, как и ожидалось, маркетологи всех снова обманули, и мотор никакой не ультразвуковой (не крутится с ультразвуковой скоростью).
Тем не менее, конструкция очень остроумная.

Ультразвуковой двигатель объектива состоит из двух колец: ротора (синий) сверху и статора (красный) снизу.
В свою очередь, статор (красный) состоит из тонкого пьезоэлектрического керамического кольца снизу и толстого (но «эластичного») зубчатого слоя сверху.

Когда на статор (красный) подаётся ток ультразвуковой частоты, в нём возникает резонанс (стоячая волна), и волна эта начинает по кругу путешествовать по статору (красный):

При этом, обратите внимание на то, что статор (красный) стоит не месте и никуда не крутится — он просто «волнуется», как море.
А вот ротор (синий) уже как раз крутится.
Спрашиваете, почему?

А из этой картинки и не поймёте.

Крутится ротор потому что на статоре есть зубцы.
Они очень мелкие (порядка 0,001 мм), и их очень много.

Работают они так, как показано на рисунке: когда под зубец подходит волна, он отклоняется на некоторый угол в сторону движения этой волны, и пока волна проходит под ним, он сначала выравнивается вертикально, а потом наклоняется в уже другую сторону (когда волна уходит из-под него).
Получается, что каждый зубец описывает дугу, и именно это создаёт вращение ротора.

Читайте также:  Лодочный мотор ямаха 40 ветос

Источник

Статья про объективы, фотографию

Ремонт ультразвукового мотора.

Самые массовые китовые объективы 18-55 у кэнона, никона, сони и других.
С этих объективов все начинают.
И потом они ломаются. Ломаются, когда уже приходит пора переходить на более продвинутые.
Они и сделаны на год не больше и то, если бережно к ним относиться.
Даже прибережном отношении со временем пластиковые детали начинают затирать.
Прилагается больше усилий, направляющие гнутся и зум ломается.
У меня на сайте есть статьи по ремонту механики.
Эта статья про ремонт ультразвукового мотора, который изнашивается со временем.

Как извлечь мотор, я не пишу, нет ничего проще.

В моторе нечему ломаться, три детали.

Для усложнения задачи возьмём мотор со сломаным шлейфом.

Ремонтируется прсто, всего три провода, средний земля.
Немного о работе самого двигателя, может, кто не знает.
На металлическое кольцо с ножками наклеены пъезопластины.
Когда к ним подается напряжение с частотой резонанса детали,это статор, он начинает колебаться.
Частота примерно 30 кГц, поэтому ультразвуковой мотор.
Ножки толкают ротор, он вращается и через редуктор двигает линзоблок вдоль оптической оси. Так происходит фокусировка объектива.

Плата мотора выглядит так. DC-DC блок питания и 2 фазоинвертора, три провода к мотору.

Для сравнения просто электромотор не ультразвуковой, у кэнона выглядит так.

Разводка большого USM мотора имеет ещё один немаловажный контакт.
Это четвёртый контакт подстройки частоты блока питания.
Дело в том, что резонансная частота статора меняется в зависимости от температуры.
Если частота питания отличается от резонансной частоты, двигатель работает медленнее.
Нужно сказать, что с подстройкой частоты заморачивается только кэнон, сигма не особо.

Три контакта у сигмы.


Это кэноновский в процессе ремонта, имеет 4 провода.

По большому счёту при сборке объектива на заводе частота блока питания должна подстраиваться до резонансной частоты статора.
В таком случае тупая замена мотора при ремонте невозможна. Нужно подстраивать частоту.

Вернемся к нашему мотору.
Поверхность статора очень чувствительна ко всяким инородным предметам, типа песчинок и нужна хорошая чистота поверхности ножек.
На работу двигателя влияет чистота поверхности и усилие прижимной пружины.
Будем считать, что усилие пружины не изменяется со временем, а вот поверхность истирается.
Я пробую шлифовать поверхность несколькими способами.
Для начала наждачкой 2500, результат плохой.
Ротор сразу нарабатывает задиры и двигатель клинит.
Пробую шлифовать в зеркало на войлочном круге.

Поверхность красивая, но ротор, как бы прилипает, пищит и двигатель плохо вращается.

Последний способ и самый результативный шлифовка с пастой гои на зеркале.

Оказалось важно даже не чистота поверхности а её плоскостность, она даёт наибольшую площадь соприкосновения ротора и статора.

Нет предела совершенству.

Шлейф меняется просто

Провода напаиваются и покрываются поксиполом.

Здесь одна тонкость, прижим деталей усиливается за счёт увеличения толщины статора и двигатель может не пойти.
Лишний клей убираем.

Пружину можно укоротить, но тогда прижим будет совсем непонятный.
В сборе, как то так.

И испытания прошу прощения за ссылки, я не знаю, как вставить медиафайлы, а гифки получаются большие

мотор без нагрузки работает

в редукторе тоже

и даже тубус ходит

Успехов в фотографии

132498

Источник

Поделиться с друзьями